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Scientists aim to design experiments and analyze evidence to obtain maximum knowledge.
Although scientists have many statistical methods to guide how they analyze evidence, they have
relatively few methods to quantify the convergence of evidence, to explore the full range of consis-
tent causal explanations, and to design subsequent experiments on the basis of such analyses. The
goal of this research is to establish tools that use graphical models to perform causal reasoning and
experiment planning. This dissertation presents and evaluates methods that allow scientists (1) to
quantify both the convergence and consistency of evidence, (2) to identify every causal structure
that is consistent with evidence reported in literature, and (3) to design experiments that can effi-
ciently reduce the number of viable causal structures. This suite of methods is demonstrated with
real examples drawn from neuroscience literature.

This dissertation shows how scientific results can be merged to yield new inferences by de-
termining whether the results are consistent with various causal structures. Also presented is a
Bayesian model of scientific consensus building, based on the principles of convergence and consis-
tency. Together, these approaches form the basis of a mathematical framework that complements
statistics: quantitative formalisms can be used not only to demonstrate each result’s significance

but also to justify each experiment’s design.
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When scientists seek to learn new, interesting truths, to find important patterns hiding in vast
arrays of data, they are often trying to do something like searching for a needle in a really huge
haystack of falsehoods, for a correct network among many possible networks, for a robust pattern
among many apparent but unreal patterns.

— CLARK GLYMOUR

Statisticians can no longer ignore the mental representation in which scientists store experiential
knowledge, since it is this representation, and the language used to access it that determine the
reliability of the judgments upon which the analysis so crucially depends.

—JUDEA PEARL

One may be tempted to assume that whenever we ask questions of nature, of the world there
outside, there is reality existing independently of what can be said about it. We will now claim that
such a position is void of any meaning. It is obvious that any property or feature of reality “out
there” can only be based on information we receive. There cannot be any statement whatsoever
about the world or about reality that is not based on such information. It therefore follows that the
concept of a reality without at least the ability in principle to make statements about it to obtain
information about its features is devoid of any possibility of confirmation or proof. This implies
that the distinction between information, that is knowledge, and reality is devoid of any meaning.

—ANTON ZEILINGER
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GABA inhibition, and a no-connection edge from N-ras to hippocampal learning.
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least one negative intervention was performed to test the relation between these two
phenomena. The edges in gray—from GABA inhibition to LTP, and from LTP to
hippocampal learning—are hypothetical edges: putative causal assertions that lack
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background knowledge about a causal system; they give the research map additional
structure to facilitate the interpretation of empirical results. © 2017 Matiasz et al.
[MWW17a]; licensed under CC BY 4.0. . . . . . . o v v v v v vt
The heuristic approach for calculating an evidence score, which was used in early
versions of research maps. Each cell in the table starts with a value of zero, and each
empirical result increments the appropriate cell by one. The function Max(E N, 7)
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according to this maximum value: either excitatory (£), no-connection (N), or in-
hibitory (Z). © 2018 Matiasz et al. [MWD18]; licensed under cC BY 4.0.

The three causal graphs on the left form a Markov equivalence class. Although their

edges have different orientations, these three causal graphs all imply the (in)dependence

relations on the right, in accordance with the rules of d-separation. . . . ... ..
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CHAPTER 1

Introduction

When scientists perform an experiment, they usually use a statistical method to show whether their
experiment’s result is significant. But when scientists select their next experiment, they rarely use
a quantitative method to show whether their experiment’s design is optimal. In much basic-science
research, and in this dissertation, an experiment’s design consists of two main choices: (1) the choice
of which phenomena—out of all the potential phenomena in a system —will be involved in the ex-
periment, and (2) the choice of which empirical strategy will be used—either a passive observation
or an intervention where one or more of the phenomena are manipulated. For instance, given the
available evidence, it may be more informative to intervene on variable X" and observe the response
of variable Y'than it would be to observe whether variables Y'and Z covary; in other situations—with
different evidence available—the opposite may be true. There are still other situations where, given
conflicting evidence, it may be most informative to repeat an experiment. Given the importance of
such decisions, one can ask why scientists quantify the significance of an experiment’s result, but
not the potential significance of that experiment’s design. Why is it that empirical results are usually
assessed objectively, and empirical designs are often selected subjectively [SLB14, pp. 1, 42-43]?

This inconsistency in scientists’ objectivity is a striking asymmetry in the scientific method.
Despite the rigor, objectivity, and statistical validation that characterize scientific experiments, the
cognitive process that occurs in a scientist’s mind in between experiments—experiment planning —
often happens informally and in an abstract way that cannot be shared with the scientific community.
This subjectivity in experiment planning stands in stark contrast to the extreme measures scientists
take to ensure the objectivity of the experiments themselves. Figure 1.1 depicts this peculiar bifur-
cation of the scientific method into objective and subjective components.

How can scientists select experiments more objectively? For those who want to identify a

system’s causal relations, this dissertation offers an answer: first, identify the causal explanations

1



Perform Analyze Publish

experiment data finding

OBJECTIVE

SUBJECTIVE

Design Synthesize Find
experiment evidence literature

Figure 1.1: A depiction of the scientific process from the perspective of basic-science researchers
who perform experiments (e.g., molecular biologists). See Clark and Kinoshita [CK07] and Russ et

al. [RRH11] for alternative depictions.

that are consistent with the available evidence; next, select the experiment that could eliminate the
most explanations from consideration. By taking maximum advantage of the available evidence to
minimize their uncertainty, scientists can not only identify the smallest set of plausible explanations
but also plan their next experiment more effectively [Fed72, p. 7].

Causal explanations can be expressed formally with the mathematical device of a causal graph,
a directed graph in which the notation X — Y denotes that variable X in some way controls the
behavior of variable ¥ [SGS00, Pea09]. Causal graphs visualize such relations concisely and intu-
itively, much like the diagrams of signaling pathways that pervade the biological research literature.
But unlike most pathway diagrams, causal graphs also have precise and predictive mathematical
properties, making them a more suitable representation for conveying not just empirical results but
the snferences that one can make by considering combinations of empirical results.

My hypothesis is that scientists can quantify the value of potential experiments—and thus
design experiments more objectively, with an analytic basis—by representing the implications of
empirical results with causal graphs. This dissertation more directly addresses two supporting sub-

hypotheses:



1. Theempirical results reported in research articles can be translated into constraints on the structure of
a causal graph. Although it is not yet common for many scientists to report their findings with
causal graphs, research articles do commonly report statistical information, including statis-
tical dependence and independence relations between phenomena. This dissertation shows
how this statistical information can drive causal-discovery procedures that identify consistent
causal explanations. The result is a literature-based, meta-analytic approach to causal discov-

ery that can incorporate scientists’ background knowledge and support experiment planning.

2. Experimental design will be made more objective and communicable to the research community if
each potential experiment is selected on the basis of its ability to reduce the underdetermination of
a system’s true causal graph. 'To the extent that an experiment is designed to identify a sys-
tem’s causal relations, some experiments yield more information than others—depending on
what is already known, and what is assumed about the system. An experiment’s value can
be made explicit and quantitative by using causal graphs to represent the causal explanations
that are consistent with—and those that are ruled out by—the experiment’s result (assum-
ing, of course, that the result is correct). As scientists perform experiments, refuting specific
explanations and homing in on the truth, causal graphs give a quantitative framework for mini-

mizing the number (or cost) of experiments needed to identify the system’s true causal graph.

1.1 Motivation: The imprecision of biological pathway diagrams

Causality is a primary concern in science, and particularly in medicine, where cause and effect de-
termine matters of life and death. Although some researchers have proposed that we dispense with
the concept of causality—and speak only of correlations—such movements seem to have lost favor:
causality is now discussed in literature across many scientific disciplines [Her18].

We may not soon reach philosophical consensus on causality—much about the topic is still
debated [Wo005, Reul3]—but we are certainly in an unprecedented time regarding causality’s rela-
tionship to mathematics [Peal7]. The work of Judea Pearl, Clark Glymour, and others has allowed
us to express causality using probability and statistics, yielding new technical applications and re-

search programs [Pea09, SGS00]. These developments have led Dr. Gary King to assert, “More



has been learned about causal inference in the last few decades than the sum total of everything that
had been learned about it in all prior recorded history” [MW15]. Scientists would do well to use
these methods, but practical barriers remain to applying them in the laboratory. This dissertation
presents practical causal-reasoning tools, tailored to the needs of scientists who want to reason more
rigorously not just with data, but also with qualitative information from the research literature.
Causal graphs are a particularly suitable formalism for reasoning about biology because biolo-
gists tend to think in graphical terms. This preference for graphical image schemas is demonstrated
by the ubiquity of pathway diagrams in the biological literature. In a pathway diagram, each node
signifies a biological phenomenon, and each edge between nodes signifies a relation between phe-
nomena. The result is a schematic summary of empirical results and their interpretations; Figure
1.2 is an example. These diagrams are useful in that they can concisely present complicated net-
works of interactions; as such, biology has more graphical information in its literature than do most
other fields [LHMO09]. It has even been suggested that the graphical depiction of a directed path
from a source to a target (e.g., S — 7) is the most common image schema used to structure the

expression of ideas [TT11, p. 64].

Microtubules

Figure 1.2: An example of a pathway diagram that has been adapted from a research article [CS03].
This diagram illustrates biological mechanisms, but because the meaning of each edge is not pre-

cisely defined, this diagram cannot necessarily be used to reason causally about the system.



However, biological pathway diagrams lack the kinds of standardized semantics and mathe-
matical descriptions that have been developed for causal graphs. There is not one universal standard
for expressing pathway diagrams, so a given diagram does not always give rise to one unambiguous
interpretation [LHMO9]. This problem is compounded when one attempts to synthesize pathway
diagrams from multiple articles.

Multiple pathway diagrams cannot be synthesized by simply constructing the union of the
diagrams’ nodes and edges. As an example, consider Figure 1.3. The first pathway conveys that
a change in X preceded a change in Z with reason to believe that X in some way affected Z. The
second pathway—say, from a separate article—presents a more nuanced picture: a change in X pre-
ceded a change in Y| and the change in ¥ preceded a change in Z. A biologist who encounters these
diagrams in the literature may want to combine them—both to reduce the graphical information
that they need to consider and to see what these diagrams imply when considered together. The
third pathway in Figure 1.3 is a hybrid diagram that consists of the union of the first two diagrams.
Note that because of the X — Zedge, it appears as though X can affect Zindependently of ¥, even
if, for instance, ¥’s activity is experimentally blocked. But this interpretation does not necessarily
follow from the empirical evidence that led to the first and second diagrams. For example, it is pos-
sible that ¥ was unknown and thus unmeasured in the first study. Even if| in reality, Y mediated
this X — Zinteraction, it was not part of the explanation derived from the empirical evidence. So
while this hybrid diagram may be valid, it is not the only diagram that accounts for the evidence:
the second pathway in Figure 1.3 is another valid option. To know which diagram is correct, we
would need to know more about the studies that led to these diagrams (if such information is even
available), or we would need to perform additional studies. For instance, we could prevent ¥ from
changing and see if intervening on X still causes a change in Z.

A key point is that empirical evidence can be perfectly consistent with multiple expla-
nations, and thus with multiple pathway diagrams [Fry90, VP91, SGS00]. With every variable
that we add to the system, the number of possible pathways grows super-exponentially. Therefore,
the bookkeeping required to identify every consistent explanation becomes increasingly complex—
far beyond what an individual scientist can be expected to consider manually. The development of

causal graphical models in the last few decades has enabled algorithmic solutions to this problem.
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Figure 1.3: The union of pathway diagrams is not necessarily consistent with the evidence that is
encoded in—or with the inferences that are allowed by—the individual pathway diagrams. Note
that the X — Z edge implies that X can affect Zindependently of Y, even though the evidence that

gave rise to the original pathways does not guarantee that this interpretation is correct.

If pathway diagrams cannot be synthesized by taking their union, how then should they be

combined? The approach presented here is to

1.  identify the empirical evidence used to construct pathway diagrams;
2. translate this evidence into formal constraints on causal structure; and
3. input these constraints to a causal discovery algorithm to identify consistent causal graphs.

The mathematical theory that underlies causal graphs allows multiple causal graphs to be fused
while ensuring that the hybrid graph is logically consistent with its individual components. Rather
than analyzing a combination of datasets, this analysis works at the level of structural information, as

described by Danks and Plis:

In general, we contend that evidence amalgamation is sometimes best addressed by
thinking about the underlying structures that generated the evidence, as we can thereby
sidestep some of the standard problems of evidence amalgamation. For example, one
challenge in evidence amalgamation is the possibility of different background conditions
in different experiments. As a practical example, suppose that X does not cause Y in
any individual, but that the base rates of X and Y are both higher in population .S; than
in S,. If we simply merge data from S; and .S;, then we will find an association between
X and Y, which suggests a causal connection of some sort. If we instead merge the

causal structures inferred from each dataset, then we will correctly learn that there is
6



no causal connection between them (since we will learn “no connection” from each

dataset). [DP17]

1.2 Aims: Practical causal-reasoning tools for scientists

Before scientists reason causally about a body of evidence, they need to decide which evidence to
trust in the first place. To help scientists integrate and quantify evidence, this dissertation presents
the research map representation for empirical results and hypothetical assertions. This representa-
tion quantifies the methodological diversity on which scientific claims are based, taking into account
not only the ontological information (i.e., what happened in a study) but also the methodological infor-
mation (i.e., #ow this information came to be known). By quantifying both the consistency of individ-
ual lines of evidence and also the convergence (or triangulation) of multiple lines of evidence, this
model of scientific consensus building addresses important gaps in current meta-analytic methods.
This method is thus offered as a strategy for dealing with problems of p-value interpretability and
the related “replication crisis” that is now commonly discussed in academic journals and popular
media [GSR16, ASS18]. We also demonstrate research maps’ use as an annotation schema for cap-
turing information pertaining to causal structure, which is used as input for constraint-based causal
discovery.

There are a variety of causal discovery algorithms that operate on primary data; however, less
explored is the problem of building causal models with only qualitative information from scientific
communication, such as research articles. This is an important problem in that much of the evi-
dence that a scientist encounters is qualitative: research articles and scientific presentations, for
instance, are often unaccompanied by primary data but nonetheless convey important information
that should inform experiment planning. This dissertation uses recent advances in constraint-based
causal discovery to develop a pipeline that allows for causal discovery and experiment selection in
the absence of primary data, using evidence from free-text research articles instead. An advantage
of this approach is that experts’ domain knowledge can readily be incorporated into the pipeline,
thus constraining the model space in ways that primary data often cannot. And when data is avail-
able, it can also be processed by the pipeline, helping to further determine causal structures. This
pipeline was evaluated for its ability to yield causal inferences, which can be derived either from

7



an individual research article or from the synthesis of multiple articles. It was also evaluated for
its ability to provide experiment-selection heuristics based on graphical representations of causality.
Below, we discuss how practical limitations in scientific research come into conflict with notions
of optimality in experiment selection. We consider experimental designs under constraints that are
common in biology, particularly molecular biology: experiments that involve only two variables,
in which neither or one of the variables can be intervened on (i.e., experimentally manipulated).
For simplicity we assume causal sufficiency and acyclicity (§ 2.2); however, the causal discovery
algorithm that we use can accommodate latent variables and cycles. Under these assumptions, we
present experiment-selection heuristics that can make formal concepts of causality more practical
for scientists who would like to apply them in their work. With simulations, we show how these

heuristics can be used to increase the efficiency with which scientists obtain causal knowledge.

1.3 Overview: Planning experiments with causal graphs

Figure 1.4 is a system diagram of meta-analytic causal discovery and experiment selection, which
comprises the following steps. First, scientific communication (e.g., literature) is annotated to pro-
duce a schematic representation—for our purposes, a research map—of empirical evidence. Sec-
ond, this schematic representation is translated into a set of statistical relations, expressed as logical
propositions. Third, these propositions, interpreted as constraints on causal structure, are input to
a constraint-based causal discovery algorithm that identifies all the causal graphs consistent with the
constraints. (In cases with conflicting constraints, the algorithm identifies the causal graphs that are
maximally consistent.) Fourth, this set of candidate models is analyzed using the degrees of freedom
of the candidate models (§ 6.2) to identify which next experiments could be most informative. Each
component of this pipeline is described in a subsequent chapter.

This dissertation proceeds as follows: Chapter 2 reviews the literature on research maps,
causal graphs, causal discovery, and experiment selection; gaps in this literature are discussed in
light of this dissertation’s contributions—specifically regarding meta-analytic causal discovery and
a calculus of evidence for combining scientific results. Chapter 3 presents ResearchMaps, a web ap-
plication that entails a major component of this pipeline, and which provided data for the system’s
analysis. Chapters 4-7 present each component of the meta-analytic technique in greater detail: I
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Figure 1.4: This system diagram gives an overview of a meta-analytic approach to causal discovery
and experiment selection. (In the research map, the studies involving X'and Z are shown on separate

edges to highlight their correspondence to the third and fourth statistical relations.)

describe how to collect constraints on causal structure (Chapter 4), identify causal structures that
are consistent with the constraints (Chapter 5), quantify evidence and causal underdetermination
(Chapter 6), and select potential experiments by how informative they could be (Chapter 7). Chap-
ter 8 presents evaluations and use cases of the system, designed to demonstrate the pipeline’s prac-
tical utility for biologists. Chapter 9 concludes with comments on my contributions, my hypotheses,
the results’ generalizability, and the method’s range of applicability, as well as suggestions for future

work.



CHAPTER 2

Literature review

2.1 Research maps

A research map is a graphical representation of empirical results and hypothetical assertions [LS13,
SLB14, SM15, MWW17a, MWD18]. Figure 2.1 is a research map that represents a neuroscience
article [CFKO02]. As a graphical representation, a research map includes nodes and directed edges.
Each node represents the identity and properties of a biological phenomenon, such as the protein
CREB. A node can be identified with a simple text label, such as “CREB.” More formally, a node
can be identified using the unique identifier (UID) for a concept within an ontology, such as the
Gene Ontology (GO) [ABB00], the Unified Medical Language System (UMLS) [Bod04], or the
Systematized Nomenclature of Medicine—Clinical Terms (SNOMED-CT) [Don06]. In the Re-
searchMaps web application (§ 3.1), each node is represented using the three properties of what,
where, and when.

Each directed edge represents a relation between phenomena, such as the excitatory relation
between CREB and spatial learning (CREB — spatial learning). As a convention from biology, the
node at the tail of the edge is called an agent; the node at the head is called a target. The agent
for one edge can be the target for another. This agent-target image schema (agent — target) is
used to represent both empirical results and hypothetical assertions. When it represents empirical
results, the schema conveys the result of a study that was actually performed. When it represents
a hypothetical assertion, the schema conveys what a study’s result is hypothesized to be, should
the study be performed. Hypothetical edges are drawn in a lighter color to distinguish them from

empirical edges.
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2.1.1 Categorizing evidence

Each instance of the agent-target image schema represents two kinds of information: methodological
and ontological. The methodological information describes the empirical strategy used to study the
agent and target—it conveys Zow facts about the phenomena are elicited from nature. For example,
the agent may be experimentally manipulated; if so, this methodological aspect of the experiment
should inform how we interpret the experiment’s results. This methodological information is cate-

gorized according to a taxonomy of empirical methods, which includes four classes:

o positive intervention (1)
e  positive non-intervention (')
o negative non-intervention ( 2+)
o negative intervention ()

In an intervention, an agent is experimentally manipulated, causing its quantity or probability to
change; the target’s activity is measured to record whether it also changes, purportedly in response
to the agent’s change. In a non-intervention—an observation—both the agent and target are pas-
sively observed, without intervention; the changes (or lack thereof ) in both phenomena are recorded.
In all four classes, “positive” and “negative” denote the direction of the change in the quantity or
probability of the agent. The target’s quantity or probability may not change in a study, but the
research-map schema requires the agent’s quantity or probability to have changed; otherwise, there
could be no direct evidence of the agent’s effect on the target.!

Studies in these four classes yield empirical results, which are represented in the ontological
component of a research map. Whereas the methodological information describes 4ow the results
were obtained, the ontological information conveys what the study showed. For example, there
could be an experiment where phenomenon A first increases, leading to an increase in phenomenon

B. This result would imply a relation between the two phenomena.

!t is currently assumed that every edge in a research map is directional; therefore, the agent — rarget schema is
used even in non-intervention studies where the direction of causality cannot be posited on the basis of a correlation
alone. This convention thus assumes that the researcher has background knowledge that is sufficient to posit a causal
direction on the basis of this observational (non-intervention) result.
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Relations between phenomena—the edges between nodes in a research map—fall into three

categories:

o excitation (—)

o inhibition ()

o no-connection (---e)

These relations usually imply the notions of positive correlation, negative correlation, and indepen-
dence, but they are framed with vocabulary that is common among biologists. In a given study, the
combination of the agent’s change and target’s change imply a specific relation. Table 2.1 presents

the possible combinations of study classes and results, along with the relation that is implied in each

case.

Study class Change in agent | Change in target | Implied relation
positive intervention + + excitation
positive intervention + 0 no-connection
positive intervention + — inhibition
positive non-intervention + + excitation
positive non-intervention + 0 no-connection
positive non-intervention + — inhibition
negative non-intervention — + inhibition
negative non-intervention — 0 no-connection
negative non-intervention - - excitation
negative intervention — + inhibition
negative intervention — 0 no-connection
negative intervention - — excitation

Table 2.1: The possible combinations of study classes and results, along with the relation that is
implied in each case. The plus symbol ( + ) denotes an increase; the minus symbol ( — ) denotes a

decrease; and a zero ( 0 ) denotes no change.
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Figure 2.1: This research map represents the empirical results and hypothetical assertions reported
in a neuroscience article [CFK02]. All three types of relations are shown: for instance, an excitatory
edge from K-ras to LTP, an inhibitory edge from NF1 to GABA inhibition, and a no-connection edge
from N-ras to hippocampal learning. The symbol on the edge from NF1 to hippocampal learning
(/) indicates that at least one negative intervention was performed to test the relation between these
two phenomena. The edges in gray—from GABA inhibition to LTP, and from LTP to hippocampal
learning—are hypothetical edges: putative causal assertions that lack empirical evidence. Hypo-
thetical edges are useful for incorporating assumptions or background knowledge about a causal
system; they give the research map additional structure to facilitate the interpretation of empirical

results. © 2017 Matiasz et al. [MWW17a]; licensed under cc BY 4.0.

2.1.2 Quantifying evidence

The research-map framework includes a method for quantifying evidence: each empirical edge is

assigned a cumulative evidence index (CEI) on the interval (0,1) that conveys its evidence’s support
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for a specific relation between the agent and target. The CEI is based on the idea that ontological
information should be evaluated with respect to the methodological details of how it was obtained.
Forinstance, a correlation between A4 and B may provide valuable evidence, but this evidence should
be evaluated in light of whether the correlation manifested while 4 was experimentally manipulated
in an intervention. There are at least two reasons for this. First, interventions and observations
each have their own limitations regarding the information that they can provide. Observations can
identify correlations in a system, but in most cases they cannot determine the direction of a causal
relation—hence the popular refrain “correlation does not equal causation.” Interventions are useful
for determining the direction of causality, but because they manipulate parts of the system and thus
perturb it from its “natural” state, they are unable to identify some correlations—namely, those
arising from causal paths that lead to the manipulated variable(s) [EGS06, Ebe07]. The second
reason for considering ontological facts in light of their methodological context is that empirical
methods are fallible: there is always the possibility for a study to yield a result that is a mere artifact.
Scientists thus test hypotheses using a variety of methods to mitigate the risk of spurious results
[SLB14].

The CEl is designed to express the epistemic principles of evidential convergence and consis-
tency. By gauging the extent to which evidence is convergent and consistent, this scoring method
helps to distinguish hypotheses with strong support from those with weak support. The principles
of convergence and consistency are thus used for instantiating and scoring empirical edges in re-
search maps.

Convergence analysis assesses whether the outcomes of the different kinds of studies (pos-
itive and negative interventions, and positive and negative non-interventions) are consistent with
each other—i.e., whether they support a single relation type (either excitatory, inhibitory or no-
connection). Suppose we find that optogenetically inhibiting cell type A is associated with a deficit
in spatial learning. Suppose also that enhancing the activity of cell type A4 enhances the same form
of learning. If we also found that cell type A is activated during spatial learning, and that this cell
type is inactive when the animal is not learning, then our combined results would make a compelling
argument that the activation of cell type A is causally connected to spatial learning. In a research

map, this convergence between these four study classes would yield a relatively high CEI for the
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excitatory edge between cell type A4 and spatial learning. On the other hand, contradictions among
the data would lower the CEI of the edge. Convergence thus encompasses the notions that multiple
lines of evidence are preferable to one, and that different study classes make unique contributions
to testing the reliability of a hypothesized relation between two phenomena.

In addition to gauging the convergence of experimental results across multiple study classes,
it is also important to gauge the consistency of empirical results within each study class. For this
purpose, consistency analysis assesses whether experimental results are reproducible. For example,
we might ask whether different kinds of positive interventions on the activity of cell type 4 (e.g.,
chemogenetic and optogenetic) always result in an enhancement of spatial learning. This question
can refer to multiple iterations of the exact same experiment, or to a set of experiments that are
similar in principle—e.g., two positive interventions of receptor 4, one chemogenetic and the other
optogenetic, which test two different forms of spatial learning.

In initial versions of the research-map framework, the CEI was calculated with a heuristic
designed to express the principles of convergence and consistency [SM15]. This initial method
worked as follows. Within each of the four study classes, the first study receives a score of 0.125.
Each subsequent study in the same class receives a progressively smaller score according to a geo-
metric progression, with an initial value of 0.125 and a common ratio of 0.5. For each study class,
this geometric progression asymptotically approaches 0.25, such that the scores from the four study
classes together can sum to a value in the interval (0,1). For example, the first positive intervention
for a given agent-target pair receives a score of 0.25(1—0.5') = 0.125. The second positive interven-
tion receives 0.125/2 = 0.0625, for a total score of 0.25(1— 0.5%) = 0.125+0.0625 = 0.1875. This
geometric progression expresses the principle of consistency, the idea that multiple replications of a
study provide stronger evidence than just one instance of that study alone. But each replication con-
tributes less than its predecessor because the results of successful replications are progressively less
surprising. This progression of scores (0.125,0.0625,0.03125, . .. ) is used independently for each
series of studies within each study class. Treating each study class separately is an expression of
convergence, the idea that multiple forms of evidence are always preferable to just one. Intuitively,
each study class provides its own “perspective” on the hypothesis under consideration, helping to

determine which of the possible relations has the dominant evidence. When the results of studies
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conflict—e.g., some suggest an excitatory relation while others suggest an inhibitory relation—the
total score of the edge is lowered by computing a normalized ratio that compares the dominant
evidence’s score to the total score of all evidence. This method, whose derivation is given in Fig-
ure 2.2, has been replaced with a new one that expresses the same epistemic principles from a formal
Bayesian perspective (§ 6.1).
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Figure 2.2: The heuristic approach for calculating an evidence score, which was used in early ver-
sions of research maps. Each cell in the table starts with a value of zero, and each empirical result
increments the appropriate cell by one. The function Max(E N ,Z) returns the maximum value
from the set {€,N,Z}. The edge’s relation is assigned according to this maximum value: either ex-
citatory (&), no-connection (), or inhibitory (7). © 2018 Matiasz et al. [MWD18]; licensed under

CC BY 4.0.

Although a research map concisely summarizes a set of empirical results, it does #o# necessar-
ily give the true causal explanation of those results [SLB14, pp. 130-133]. For instance, consider two
studies, one where positively intervening on A produced an increase in B, and another study where
positively intervening on A produced an increase in C. Considered together, these two studies could
be represented by the research-map edges B <— A4 — C. This diagram implies that A4 affects Bin a
process that is independent of the process by which A affects C. However, it is possible that the true
causal path runs 4 — B — C, and that B was simply unmeasured in the study involving 4 and C.
This is another example that shows how a set of empirical results can be perfectly consistent with
multiple explanations (§ 1.1). Therefore, empirical results are represented with research maps, but

causal explanations are represented with a different representation known as causal graphs.
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2.2 Causal graphs

This dissertation expresses causality using the framework of causal graphical models [SGS00, Pea09].
This framework includes the notion of causal structure, which is a system’s particular configuration
of causal relations that exist between phenomena. This network of causal relations is modeled by a
causal graph, a directed graph G = (V, E) where V is the set of vertices in the graph (variables in
the system), and E C V x V is the set of directed edges between the vertices in V (causal relations
in the system).” Relative to the vertices in V, a directed edge in the graph (e.g., x; — #;) conveys
that the variable x; € V at the tail has a direct causal effect on the variable x; € V at the head.
The parents of a particular variable #; consist of every variable that has a direct edge from itself to x;;
these parent variables can be thought of as the “variables Nature must consult before deciding the
value of [%;]” [Pea09, p. 203].

Causal graphs are described using the following graph terminology (many of these definitions

are reproduced verbatim or nearly verbatim from [SGS00]):

Directed path A directed path from vertex A to vertex B in a graph G is a sequence of vertices
beginning with A4 and ending with B such that for every pair of vertices X and Y that are
adjacent in the sequence and occurring in the sequence in that order, there is a directed edge

EX7Y:X—> Yin G.
Directed graph A directed graph has only directed edges.

Descendant A descendant of a vertex A is any vertex B such that there is a directed path from

Ato B.

Causal chain If there is a sequence of variables in V beginning with 4 and ending with B

such that, for each pair of variables X"and Y that are adjacent in the sequence in that order, X’

2Tt is instructive to distinguish between a causal graph and a causal model: A causal graph encodes only a system’s
causal structure, the configuration of directed edges among the system’s variables, where each edge qualitatively sig-
nifies a causal relation. In addition to this structural component, a fully specified causal model has a parameterization,
a quantitative specification of the values that each variable takes in relation to others. For example, a causal Bayesian
network consists of both a causal graph that gives its structure and a set of conditional probability tables that gives its
parameterization [Dar09]. This dissertation addresses the task of learning a system’s causal structure, as expressed by
a causal graph.

17



is a direct cause of Y'relative to V, then we say that there is a causal chain from A to B relative

to V.

Source In a directed path from A to B, the source of the path is vertex A.

Sink Ina directed path from A to B, the sink of the path is vertex B.

Acyclic path A path that contains no vertex more than once is acyclic; otherwise it is ¢yclic.
Directed acyclic graph (DAG) A DAG is a directed graph whose paths are all acyclic.

Mediator With respect to a directed path from vertex A to vertex C, vertex B is a mediator

if it is on the path but is neither the path’s source nor its sink.

Common cause A variable X is a common cause of variables Y and Z if and only if there is
a directed edge Eyy = X — Yrelative to {X, Y, Z} and a directed edge Ey, = X — Z
relative to {X, ¥, Z }.

Collider With respect to a path in a graph, a collider on the path is a vertex whose adjacent

edges both point toward the vertex. Vertex B is a collider on the path 4 — B < C.

Latent variable A /atent variable is a variable that is unmeasured but causally connected to

one or more variables in a system of measured variables.
Confounder A confounder is a latent common cause of two variables.
Causal sufficiency A set of variables is causally sufficient if there are no confounders.

A causal graph over a set of variables can be associated with a probability distribution over
that same set of variables. When this association exists, the causal graph encodes features of the

probability distribution, and vice versa. This association can exist given two assumptions:

) Causal Markov condition: A DAG G and its corresponding probability distribution P(V)
satisfy the causal Markov condition if and only if for every x; € V| &; is independent of its
nondescendants, given its parents. Under this assumption, Reichenbach’s common cause prin-
ciple states that if x; and «; are statistically correlated, we know that (1) x; causes xj; (2) ;
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causes x;; or (3) there is a set of common causes (or common causal ancestors) of x; and x;
[RR56, Reul3]. These three conditions all individually imply that a path exists between x;
and x; in the causal graph. Thus, under the causal Markov assumption, a probabilistic depen-
dence implies a causal connection, and a causal separation implies a probabilistic indepen-

dence [Ebel3].

o Causal faithfulness condition: A probability distribution is said to be fasthful to its corre-
sponding directed graph G if all and only the independence relations exhibited by the distri-
bution are reflected in the causal structure of G. The assumption of causal faithfulness is the
converse of the causal Markov assumption: under the causal faithfulness assumption, a prob-
abilistic independence implies a causal separation, and a causal connection implies a proba-
bilistic dependence [Ebe07]. Any independence exhibited by data generated from a faithful
causal graph (and only these independencies) will be reflected in the structure of the graph.
Without this assumption, probabilistically independent phenomena could still have a causal

connection between them [Ebe13].

When the causal Markov and causal faithfulness conditions hold for a DAG, a useful corre-
spondence exists between a graphical criterion known as d-separation and features of the probability
distribution associated with the DAG: any conditional dependence or independence relation® im-
plied by d-separation holds if and only if the probability distribution also encodes this (in)dependence
[GVP90]. D-separation can thus be used to read conditional (in)dependence relations off a DAG.
The definition of d-separation is given in [Pea09, pp. 16-7] for disjoint sets of variables X, Y, and
A

A path p is said to be d-separated (or blocked) by a set of nodes 2 if and only if

1.  pcontains a chain 7 — m — jor a fork 7 < m — j such that the middle node # is

in Z, or

2. pcontains an inverted fork (or collider) 7 — m < j such that the middle node 7 is

not in Z and such that no descendant of # is in Z.

3 Below, I refer to such relations with the shorthand “(in)dependence relation” or “(in)dependence.”
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A set Zis said to d-separate X from Y'if and only if Z blocks every path from a node in

Xtoanodein Y.

Under the Markov and faithfulness assumptions, if two (sets of ) variables are d-separated, it follows
that the (sets of ) variables are independent in the probability distribution that is associated with the
DAG. To determine if two disjoint sets of variables are d-separated, we can also ask if they are not
d-connected. Hyttinen et al. [HE]14] give the following definition of d-connection: “A path in graph
G is d-connecting with respect to a conditioning set C if every collider ¢ on the path is in C and no
other nodes on the path are in C.” If a path is not d-connected, it is d-separated. This method for
identifying d-separation is equivalent to Pearl’s method above [Stu98, Kos02].

The model space for causal graphs is enormous. The number D of possible DAGs that exist

for NV variables grows super-exponentially and is given by the following recurrence relation [Rob73]:

N
D(N) = kz:; (—1)k1 (g) 2PV DN — k) (2.1)

This model space is relatively small for small numbers of variables: for sets of one, two, and three
variables, there are one, three, and 25 possible DAGs, respectively. But for ten variables, there
are over 10'® possible DAGs. To highlight how quickly this model space grows, Table 2.2 lists the

number of DAGs that exist for one to ten variables.

2.2.1 Markov equivalence classes

Even though they have different graphical structures, two or more causal graphs can encode the
same (in)dependence relations, as given by the rules of d-separation. A set of causal graphs that all
imply the same (in)dependencies is called a Markoy equivalence class [SGS00]. Figure 2.3 gives an ex-
ample of a (Markov) equivalence class consisting of three graphs. Although the graphs’ edges have
different orientations, they all imply the same (in)dependence relations and are thus observation-
ally Markov equivalent: given only the observed (in)dependencies, the graphs are indistinguishable.
An equivalence class thus formally expresses how evidence can be consistent with differing expla-
nations, as discussed in § 1.1 and § 2.1.2. In the case of an equivalence class, the evidence can be a
set of (in)dependence relations, and the differing explanations are expressed as causal graphs, each

with a different causal structure.
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Number of variables Number of DAGs
1 1
2 3
3 25
4 543
5 29,281
6 3,781,503
7 1,138,779,265
8 783,702,329,343
9 1,213,442 454 842 881
10 4,175,098,976,430,598,143

Table 2.2: The number of possible DAGs over /V variables, for / = 1 to 10.

This dissertation uses the phrase “equivalence class” in two ways: (1) to refer to a Markov
equivalence class, as traditionally defined [SGS00]; and (2) to refer to the set of causal graphs that
remain consistent with a set of evidence. Note that pieces of evidence can come into conflict with
each other, and these conflicts can be resolved in multiple ways. Depending on how the conflict is
resolved—and which evidence is discarded to achieve this resolution—different sets of graphs will
be considered consistent. In this case, “equivalence class” is used to mean “the set of causal graphs
that remain consistent with the evidence that one is currently willing to consider.” Throughout this

dissertation, this phrase will be the intended meaning unless otherwise specified.

2.3 Causal discovery

The goal of causal discovery is to identify a system’s causal structure (i.e., its causal graph) given
information that is derived from the system, such as (in)dependence relations between the system’s
variables [Ebel7]. Causal discovery methods fall into three broad categories: (1) constraint-based
methods, (2) score-based (or Bayesian) methods, and (3) methods based on semi-parametric as-

sumptions [MD18].
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Figure 2.3: The three causal graphs on the left form a Markov equivalence class. Although their
edges have different orientations, these three causal graphs all imply the (in)dependence relations

on the right, in accordance with the rules of d-separation.

Constraint-based methods make use of the correspondence between (in)dependence rela-
tions in data and graphical structures in the associated causal graph. Data collected from the system
is analyzed to obtain the (in)dependence relations that exist between the system’s variables. These
(in)dependence relations are interpreted as constraints on causal structure; the task is then to iden-
tify the causal graphs that are (maximally) consistent with these constraints. Examples of constraint-
based methods include the PC algorithm and the Fast Causal Inference (FCI) algorithm [SGS00].
Some constraint-based methods use Boolean satisfiability (SAT') solvers [BHMO09] to identify con-
sistent causal graphs. This dissertation relies heavily on one of these SAT-based methods [HE]J14].

Score-based methods define a measure that quantifies the fit between data and causal graphs.
These methods commonly use a Bayesian approach: the task is to identify the causal graph that
maximizes the likelihood of the data given the causal graph. An example of a measure that is used
is the Bayesian Information Criterion (BIC) [Sch78].

Methods in the third category of causal discovery use semi-parametric assumptions to iden-
tify causal graphs with more efficiency or specificity. These methods differ from those in the first
two categories in that they do not rely on the assumption of faithfulness. As an example of a semi-
parametric assumption, one can assume that a system is governed by linear functions with non-
Gaussian noise and use Linear Non-Gaussian Model (LiINGaM) algorithms to identify the system’s
causal graph using independent component analysis [SHHO06, Shil4].

22



Causal discovery methods are increasingly being used in the biological sciences. They have
been used to identify protein-signaling networks [SPP05], cell signal transduction from proteomics
experiments [II16], transcriptional regulatory networks [ CES07], causal effects of genetic variants
[MCK10], associations between gene expression and disease [SLYO05], genetic mutations that will
cause predictable phenotypic changes [SMS12], single nucleotide polymorphisms (SNPs) that pre-
dict disease [ALA11], and causal effects of environmental factors on genetic diversity between pop-

ulations [FPP18].

2.4 Experiment selection

Experiment selection® refers to the strategies that researchers use to design their next experiment.
These decisions are generally affected by many factors, including research funding, laboratory re-
sources, and investigators’ interests. With respect to the goal of understanding a system’s causal
relations, experiment-selection techniques seek to maximize causal knowledge with a minimum of
experimental effort. These techniques ask: which next experiment or sequence of experiments
would most fully and efficiently determine the causal relations that govern the system’s variables?
Experiment selection can be either fixed or adaptive. A fixed procedure selects one specific sequence
of studies before any are performed. An adaptive procedure is permitted to update its planned se-
quence of studies in response to the results of previous studies in the sequence [Ebe07].

Researchers have approached experiment selection using a variety of techniques. Murphy
[Mur01] and Tong and Koller [TK01] take a Bayesian approach to identifying the best experiment
to perform next. Given a prior distribution over possible DAGs (without latent variables), they
enumerate the possible experiments one could perform next, compute a posterior distribution over
the graphs that could result, and identify the experiment that maximizes information gain. Although
this method is a principled Bayesian approach, it is very computationally expensive and thus does
not scale well.

Meganck et al. [MMLO05] and He and Geng [HGO08] use decision-theoretic heuristics to iden-

tify optimal experiments. Considering DAGs without latent variables, these researchers construct

M K«

* In this dissertation, I use “experiment selection,” “experiment planning,” and “experimental design” interchange-
ably. That which is being selected, planned, or designed are the parameters of an experiment described in Chapter 1.
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utility functions and decision criteria based on the number of underdetermined edge orientations
(e.g.,in a Markov equivalence class) that could be determined by subsequent experiments. Note that
Meganck et al. use the empirical distribution of edge orientations in an equivalence class to estimate
the true probability of orientations for each edge; this method is related to the experiment-selection
algorithms given in § 6.2.

Graph-theoretic approaches to experiment selection have also shown promising results. Re-
searchers have found that the problem of optimal experiment selection can be formulated as graph-
theoretic and combinatoric problems [HEH13]. Using such formalisms, Eberhardt et al. [Ebe05]
and Hyttinen et al. [HEH13] derive bounds on the number of experiments sufficient and in the
worst case necessary to identify a causal graph uniquely. In addition to DAGs without latent vari-
ables, these researchers consider causal structures with latent variables and those with feedback
(cyclicty); they also give algorithms for constructing an optimal sequence of experiments under vari-
ous constraints, such as limiting the maximum number of variables that can be intervened on simul-
taneously. Eberhardt [Ebe08] and Hauser and Biihlmann [HB12] consider acyclic graphs without
latent common causes and give algorithms for efficiently selecting optimal intervention sets. Such
methods thus translate the semantics of experiment planning to well established methods in the

literature on graph theory and combinatorics.

2.5 Gaps in the literature

2.5.1 Meta-analytic methods that quantify evidential convergence

Scientists use various heuristics to evaluate evidence and develop confidence regarding the truth
of hypotheses. But this confidence is always achieved with inference procedures, and with incom-
plete evidence. This fact should not be taboo. Consider the alternative: if a hypothesis could not
be deemed true until it was studied exhaustively—however strictly that might be defined —progress
in science would be brought to an almost stagnant pace. For instance, scientists cannot hope to test
every possible relation under every possible experimental context or condition, using every pos-
sible subset of variables; the combinatorics involved make this an impossibly expensive and time-

consuming strategy [Dan05]. This is why scientists need to rely on some sort of inference—and,
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indeed, why they already are doing so.

What exactly are the rules for this inference? Natural candidates include statistical measures,
one of the most common being the p-value. But the p-value’s ubiquity in science is incongruent
with the amount of debate over its utility and misuse, which is now documented regularly in the
literature [Gel13, GP13a, GP13b, HCV15, GSR16, AKR17]. Even the U.S. Supreme Court has ruled
on this issue, agreeing unanimously in 2011 that “statistical significance is neither necessary nor
sufficient for determining the scientific or practical significance of a set of observations” (Matrixx
Initiatives, Inc. et al. v. Siracusano et al. No. 091156. Argued January 10, 2011, Decided March
22,2011) [GSR16]. The enormous range of views on this issue suggests that science would benefit
significantly from additional theoretical clarity on the p-value’s role in science.

Despite concerns over the use of p-values and other statistics, the field of meta-analysis has
used such measures for decades to synthesize empirical findings quantitatively. Introduced in its
modern form in the 1970s, meta-analysis usually serves one of two goals: The first is to evaluate
evidence—from a relatively small group of studies—for whether an intervention is effective in ad-
dressing a problem, often in clinical settings. The second goal is to generalize empirical findings—
from a relatively large group of studies—yielding a more complete perspective than any individual
study can offer in isolation [GKN18]. Meta-analysis thus helps researchers to assess the consistency
of evidence and stands as the most sophisticated method of evidence synthesis currently available.

There is growing consensus that meta-analysis should more explicitly analyze and quantify
triangulation, the use of several different methods—each with its own empirical strategy and po-
tential sources of bias—to obtain evidence for a specific hypothesis [SW00, LTD16, MS18]. This
concept is related to the notions of intervention complexity [NGL13, LHC17], methodological diver-
sity [Joh03, Zol10], and evidential convergence (§ 2.1.2 and § 6.1). Meta-analysis offers sophisticated
methods for quantifying the consistency of evidence, including measures of heterogeneity for effect
sizes. However, there has been relatively little development of methods for quantifying triangula-
tion, even though this concept has long been described qualitatively and acknowledged for its impor-
tance [WCS66, Smi81]. A recent review of evidence-synthesis methods for health and social policy
found only one approach [Orgl4] that “[extends] the domain of consistency to consider evidence

from different study designs” and “looks at evidence from different methodological approaches to
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inform the rating of the quality of a body of evidence” [MDR18].

It is possible that triangulation is following a historical trend that has played out for other
scientific concepts: one in which qualitative intuitions about a scientific concept are gradually trans-
lated into increasingly quantitative models that formalize the original concept while also preserving
the qualitative features that made it instructive in the first place. An example of this trend is the de-
velopment of increasingly refined mathematical models for causality, an old concept that has been
explored by philosophers for centuries. David Hume, for instance, provided an influential defini-
tion of “cause,” as well as qualitative descriptions of related concepts, such as the copy principle and
the problem of induction [HumO03, Hum16]. Qualitative intuitions such as these began to be formal-
ized by Sewall Wright when he introduced path diagrams as a way to express causal associations
[Wri21, Wri23, Wri34]. Additional qualitative concepts such as Austin Bradford Hill’s criteria for
causation [Hil65] and Reichenbach’s common cause principle [RR56] further explicated notions of
causality. These ideas have now been formalized to a greater degree with the framework of causal
graphical models [SGS00, Pea09], a quantitative representation that formalizes ideas previously
described only qualitatively.

If it is true that, like causality, the concept of evidence is following a similar historical trend, it
is then less surprising that there would be such debate about the replication crisis: the crisis hinges
on evidence’s consistency, which meta-analysis explicitly quantifies. Because we now can quantify
consistency, we can scrutinize it to a greater degree. But perhaps less of a crisis would be perceived
if meta-analysis also quantified triangulation with the same precision. Even if scientists fail to repli-
cate a single line of experimentation, the totality of evidence might still point to a consistent set of
explanations [SBS18]. Regardless of the effect that triangulation will ultimately serve in the replica-
tion crisis, science seems primed to develop methods for quantifying it [MS18].

Part of the challenge in quantifying triangulation is articulating what the categories of evidence
should be: what exactly distinguishes the lines of evidence that are meant to converge, allowing us
to “triangulate” our understanding of a system? Randomized controlled trials (RCTs) are usually
seen to be the gold standard for causal inference, whereas other, nonrandomized studies take lower
positions in so-called evidence hierarchies [MDR18]. But RCTs are simply infeasible in many research

domains, often due to ethical concerns; for instance, we cannot (and should not) force participants
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to smoke cigarettes. And recent developments in causal modeling have cast doubt on whether RCTs
can independently provide the gold standard for inferring causal relations [Ebe13, Peal8]. A variety
of methods are therefore needed, whether the justification is theoretical or pragmatic.

Quantifying triangulation is part of a larger challenge of quantifying evidence. Like causal-
ity, the concept of evidence is central to human inquiry. But, as was true with causality until
only recently, evidence is still not quantified formally in most scientific research—at least not with
widespread consensus as to how this calculation should be defined [VC18, MS18]. There have been
many attempts to develop methods for quantifying evidence, with motivations grounded in probabil-
ity, statistics, and information theory [Goo60, Goo67, Vie06, Leell, Viell, VH11, VDH13, Eval5,
VS15, Eval6, VS16]. Debate over the replication crisis makes clear that this issue has not been re-
solved, as we have yet to articulate objective definitions of evidence that allow a proposition to be
verified or refuted conclusively—with the authority and objectivity, for instance, that is attributed
to measurements of temperature [ Vie06]. In this dissertation, I take the position that quantifying tri-
angulation, or convergence (§ 2.1.2), will bring us closer to a more complete definition of evidence

that expresses epistemic principles already used by scientists.

2.5.2 Causal discovery without primary data

Regardless of how it might be quantified, causal evidence comes from published studies whose re-
sults are often disseminated only as free text in research articles, often in the form of aggregate
statistics. To build a model of a causal system, a scientist must integrate these results with each
other and with background knowledge. This qualitative information must also be integrated with
knowledge gleaned from the analysis of primary data, when available. Scientists would thus ben-
efit from meta-analytic causal discovery methods that can accommodate all the various forms of
evidence that they encounter [Dan05, MWW17b].

Much of the current literature on causal discovery gives methods to identify causal relations
using primary data from empirical studies (§ 2.3). Efforts such as the Center for Causal Discovery
[CBB15] have developed robust causal discovery algorithms that operate on large-scale datasets,
and much is now understood about data fusion—combining and learning from multiple datasets

that were collected under different empirical conditions [BP16]. But it is not obvious how to gen-
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eralize these methods to meta-analytic techniques that can incorporate multiple forms of causal in-
formation, including qualitative knowledge from published literature. This dissertation shows how
constraint-based causal discovery methods (§ 2.3) provide a good platform for integrating qualita-

tive evidence in free text.

2.5.3 Interpretable experiment-selection strategies

It was just in the last few decades that causality was formalized mathematically [PM18]; it was even
more recently that researchers have used causal graphs as an analytic basis for proposing efficient
experiment-selection criteria (§ 2.4). Although much is now understood about experiment selec-
tion, including its relation to combinatorics [HEH13] and decision theory [MMLO5], work is needed
to translate the available theory and algorithms into practical tools that fit into scientists’ current

workflows [Gly04, KRO09]. David Danks nicely summarizes the task at hand [Dan05]:

For the experiment choice problem, a simple naive algorithm would first enumerate
the possible sequences of experiments as well as the possible integration outcomes for
each stage in each sequence. We could then apply the above inference rules to each ex-
tended experiment-outcome sequence to determine the stage at which we would settle
on a unique integrated structure. If we then had some probability distribution over the
experiment-outcome sequences, we could determine which experiment sequence has
the earliest expected stage at which it settles on a unique model. Of course, this strategy
is hopeless from a computational point of view, because it requires both the enumera-
tion of a highly exponential number of sequences and a specification of the probability
distribution over experiment-outcome sequences. We can avoid the computational ex-
plosion by using some heuristic strategy, but that strategy will not be guaranteed to find
the optimal experiment sequence. Unfortunately, we must—in this domain, as in many
others—make a decision between asymptotic correctness and computational tractability, and

the balancing point for that trade-off depends on the particular domain and scientists. (em-

phasis added)

Experiment-selection methods often use simplifying assumptions that are understandable

given the complexity of the analysis, yet difficult to translate into practice. For instance, to sim-
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plify the analysis, methods will often assume that the true causal graph for the system is acyclic
(e.g., [TKO1]). Other methods assume that global bounds are set on the number of variables that
can be either observed or intervened on in any one study (e.g., [May13]). And other methods re-
quire each potential experiment to be assigned a cost, allowing for an objective function that is to be
minimized by the experiment-selection policy (e.g., [MLMO06]).

In reality, constraints on empirical work in the laboratory are far less global, and much more
heterogenous across experiments. For example, a particular experimental design may allow for a
simultaneous intervention on three variables and an observation of six; in another experiment with
a different design, researchers may be able to observe only two variables simultaneously [May13].
This heterogeneity of constraints lessens the relevance of the known bounds on the number of ex-
periments that are sufficient and in the worst case necessary to identify a system’s causal graph
[Ebe05, EGS06, Ebe07, HB12]. Additionally, it is often infeasible for a scientist to objectively as-
sign costs to potential experiments: the relevant constraints in such decisions involve more than
just the monetary expenses of the necessary lab equipment, and often include subjective criteria
that are difficult to quantify. In general, research decisions are constrained by practical issues of
funding, timing, resources, and personal motivations. Thus, scientists could benefit from efficient
heuristic methods for selecting experiments that accommodate the complexity of scientific research
while still yielding instructive recommendations.

In the above quotation, Danks highlights a choice between asymptotic correctness and com-
putational tractability, but I submit that there is a third issue in experiment selection: the question
of whether scientists can interpret and see the rationale for an algorithm’s experiment suggestions.
The theoretical justification for experiment-selection algorithms are of course well founded if they
are based on a sound mathematical understanding of the relevant theory, such as combinatorics
[HEH13]. But the justification for the algorithm’s suggestions will also be expressed in these par-
ticular abstractions. These abstractions may be inaccessible to a scientist who has an advanced un-
derstanding of the system under consideration but who nonetheless lacks training in the requisite
mathematics. This is a significant obstacle because in most cases scientists make the final decision
regarding which experiment to perform next. As a result, experiment suggestions whose rationale

can be expressed only at the level of unfamiliar mathematical abstractions may be less persuasive
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than suggestions grounded in representations that domain experts already use to conceive of sys-
tems, such as graphical image schemas like pathway diagrams (§ 1.1). Indeed, the tasks of analyzing
evidence and designing experiments cannot be fully decoupled, as it is usually the gaps in evidence
that primarily motivate the design of a scientist’s next experiment. This dissertation offers inter-
pretable metrics defined over graphical representations of empirical evidence and causal structures,
as well as heuristic experiment-selection methods based on these metrics. The heuristics will not
outperform state-of-the-art experiment-selection methods that approach or achieve theoretical lim-
its on performance, but they are designed to give experiment suggestions whose rationale can be

readily interpreted by a scientist.

2.6 Contributions of this dissertation

2.6.1 The cumulative evidence index (CEI)

The heuristic approach for scoring evidence that is described in § 2.1.2 has been formalized us-
ing Bayesian statistics, yielding the cumulative evidence index (CEI). This new method is presented
in § 6.1 and has been implemented in the ResearchMaps web application, which is presented in
Chapter 3. The CEI models scientific reasoning as a type of distributed Bayesian inference [Kral7],
providing a nuanced analytic basis for characterizing how scientists build consensus in their fields.
It also addresses the lack of convergence in meta-analysis (§ 2.5.1) by quantifying it explicitly, and by
allowing scientists to express the greater importance it holds relative to evidential consistency. An-
alyzing this model led to the definition of evidential dzvergence (§ 6.1), another epistemic principle
that complements evidential convergence and consistency [MWD18]. This model thus contributes
to meta-research [IFD15] by translating qualitative principles of scientific reasoning into quanti-
tative parameters of a mathematical model, which can be analyzed and thus made more efficient

through theoretical work, simulations, and historical meta-analyses of the scientific record.

2.6.2 A literature-based technique for causal discovery

To augment what can be learned from data-driven causal discovery, this dissertation presents a meta-

analytic approach that allows researchers to identify causal structures using published findings in the
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literature, even if they are not accompanied by primary data. This method uses machine-readable
representations of empirical results in free-text resources like PubMed, which often give only lim-
ited, aggregate statistics. The strategy is to first translate free-text descriptions of empirical results
into formal constraints on causal structure. These causal-structure constraints are fed as input to
a state-of-the-art, constraint-based causal discovery algorithm [HE]J14]. This algorithm can com-
pute every causal graph that is consistent with the constraints. Features of this model space —the
set of causal interpretations that remain viable—are visualized and quantified for further analysis to
facilitate experiment selection.

By grounding literature synthesis in the formalism of causal graphs, this method offers a num-
ber of benefits that could improve the rigor with which scientists evaluate evidence and select ex-
periments. First, by allowing scientists to express empirical findings as formal constraints on causal
structure, there is a clear demarcation between facts that are demonstrated empirically and back-
ground assumptions that are used to simplify the analysis. Because a constraint-based method is
used, background assumptions can also be expressed as formal constraints to facilitate the search
over causal graphs. For example, a domain expert may specify that in any causal path, a specific sub-
set of variables should always come before another subset [Ebel7]. Alternative background assump-
tions can readily be substituted —leaving the empirical constraints intact—to evaluate the effect that
the assumptions have on the set of consistent causal explanations. A second benefit is that scien-
tists can query the system to confirm whether a hypothesis that they propose is a logical extension
of previous results. Once a set of constraints has been obtained, further constraints that represent
hypothetical results can be tested for logical consistency. If a hypothetical result introduces a logical
conflict, the scientist can be confident either that the current set of constraints includes an incorrect
proposition or that the hypothesized result is incorrect (or both). This categorization of hypotheses
has enormous implications for experiment planning but is usually impractical without such tools.
Having examined this information, scientists can select their next experiment with a more precise

understanding of what has already been discovered.
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2.6.3 Interpretable heuristics for experiment selection

To provide experiment suggestions whose rationale can be readily interpreted by scientists, this
dissertation offers interpretable metrics for evidence and uncertainty defined over the graphical
representations of research maps and causal graphs. With research maps, we quantify evidence
using the cumulative evidence index and frame experiment selection as the maximization of empir-
ical evidence for a specific hypothesis about causal structure. With causal graphs, we quantify the
underdetermination of causal structure using the degree-of-freedom metric; we frame experiment
selection as the minimization of this causal underdetermination. Heuristic approaches to experi-
ment selection are defined with respect to these metrics, whose intuition is readily expressed with a
vocabulary that scientists recognize. In these ways, scientists can select their next experiment with

the same abstractions that they use to synthesize past results.
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CHAPTER 3

ResearchMaps: a web application for experiment planning

ResearchMaps is a web application for building and querying research maps [MWD18]. It is cur-
rently hosted at http://www.researchmaps.org and is free for users at colleges, universities, and
non-profit research centers. The application consists of two main pages: the local map and the
global map. The local map shows the research maps for specific articles; it is where the author
of the research map can modify it (Figure 3.4). The global map can be used to query the entire

ResearchMaps database for specific phenomena and connections between them (Figure 3.5).

3.1 Implementation of the research-map framework

In ResearchMaps, an agent or target is defined in three complementary ways: what the phenomenon
is, where the phenomenon exists, and wken the phenomenon acts. ResearchMaps stores this infor-
mation as three properties for each node: (1) what describes a key identifier of the phenomenon
involved (e.g., the name by which the gene, protein, cell, organ, behavior, etc. is known); (2) where
describes the location of the what (e.g., the organ, species, etc.); and (3) when provides temporal
information that is critical to the identity of the what (e.g., the time, age, phase, etc.). For exam-
ple, if the protein neurofibromin is measured in multiple locations, a corresponding research map
would include multiple nodes for neurofibromin with different where properties. This approach
is instructive, as neurofibromin could have different biological characteristics in different cellular
locations (e.g., excitatory neurons versus inhibitory neurons) or at different stages of development.
ResearchMaps displays the what, where, and when properties on separate lines within each node.

The four study classes are represented by symbols above each empirical edge. As defined in
§ 2.1, positive interventions are represented by an upward arrow (1 ); negative interventions are

represented by a downward arrow ( |, ); positive non-interventions are represented by the empty set
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symbol and a superscript upward arrow ( @' ); and negative non-interventions are represented by
the empty set symbol and a superscript downward arrow ( @+ ). Although we have not yet defined
a formal representation for experiments involving more than two nodes, ResearchMaps can store
intervention experiments involving two agents. At the time of this writing, such experiments com-
prise approximately fourteen percent of the experiments logged. The putative mechanisms under-
lying the results of these multi-intervention experiments can be visualized using hypothetical edges
among the three entities involved (two agents and one target); the structure of these hypothetical
edges is provided by the user.

ResearchMaps can store information about the statistical test used to establish each finding, as
well as its associated p-value. Such information is of course valuable in evaluating studies; however,
as the areas covered by research maps are diverse, and there are no standards as to which statistics
are used and how to report them, p-values do not currently affect the CEI of each empirical edge,
and they are optionally tracked by each user. See Figure 3.1 for an example of a research map.

ResearchMaps allows the user to input both empirical and hypothetical edges between any
two phenomena (and, by extension, empirical and hypothetical nodes). As introduced in § 2.1, a
hypothetical edge represents a putative connection with no direct empirical evidence. Hypothetical
edges are often implied by empirical edges, and they are often key in interpreting and reporting the
results of a research article. As hypothetical edges do not represent empirical evidence, they are
assigned neither CEIs nor study symbols. To visually differentiate hypothetical edges, they are
shown in a lighter color and without these annotations on their edges.

Beyond allowing users to track hypotheses, hypothetical edges can also help to structure re-
search maps of empirical evidence. Just as hypotheses help to frame and organize the results of
research articles, hypothetical edges help to structure and contextualize empirical edges in a re-
search map. Consider the hypothesized pathway 4 — B — C — D. A research map that repre-
sents the empirical edges 4 — C, A — D, and B — D would not explicitly reflect the putative
A — B — C — D pathway because not all connections in this pathway are part of that map. By
including the hypothetical edges 4 — B, B C, and C — D, the underlying hypothesis for the
performed studies is immediately obvious (Figure 3.2). To further illustrate this point, Figure 3.3

displays the research map of Figure 3.1 without its hypothetical edges.
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Figure 3.1: A research map of a published article [CAS16]. Each node in a research map has three
properties: what (top), where (middle), and when (bottom). Nodes are connected by edges that
represent relations: excitatory (sharp arrowhead), inhibitory (blunt arrowhead), and no-connection
(dotted line, circular arrowhead). Each empirical edge also has a CEI that reflects the amount of
evidence represented, as well as symbols that reflect the study classes recorded for that edge. CEls
and study symbols are not assigned to hypothetical edges. Users can highlight edges that reflect the
article’s main ideas, so that they are more apparent. In cases where no one relation has received
dominant evidence, the corresponding edge is represented by a diamond arrowhead and is not as-

signed a CEL © 2018 Matiasz et al. [MWD18]; licensed under cC BY 4.0.

3.2 Creating research maps: The local map

Figure 3.4 shows the interface for creating research maps. There are fields for: the what, where,
and when properties for both the agent and the target; the study class; the type of result; and,
for empirical edges, succinct descriptions of the approaches used to (1) observe or intervene on
the agent and (2) measure changes in the target. When information is entered into the fields, the
research map is updated accordingly. When a research map is created for an article that is indexed

on PubMed, it is made public to all users. However, being first and foremost a tool for the personal
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Empirical Hypothetical Pathway

Figure 3.2: Using hypothetical edges to organize research maps. The diagram above shows how
hypothetical edges (in gray) help to organize empirical edges in a research map, thus framing the

empirical results in light of a specific hypothesis. Original figure © 2018 Matiasz et al. [MWD18];

used here under cc BY 4.0 with a different font.

curation of research information, ResearchMaps can also be used to create private maps, visible only
to the user who entered them. These private maps can include unpublished experiments of ongoing
projects, purely speculative models, etc.

There are multiple steps to make a research map for a given article. The first step is to iden-
tify all the nodes that will be included. This process entails the identification of agent-target pairs
involved in the reported studies. For any one agent-target pair, the next step is to find the study
class that was performed to test their relation. In addition to the study class, the user records the
result that was obtained, as well as the key techniques that were used to observe (or manipulate) the
agent and observe the result in the target. Once the empirical edges are entered, any hypothetical
edges suggested by the article can be added, thereby helping to structure the map and contextual-
ize the empirical results. Finally, because research maps can become large and complex, users can

highlight the main edges, whether they are hypothetical or empirical.
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Figure 3.3: The research map of Figure 3.1 with its hypothetical edges removed. This modified
research map, when compared with the one in Figure 3.1, illustrates how hypothetical edges help to
structure research maps, thereby augmenting the interpretation of empirical results. © 2018 Matiasz

et al. [MWD18]; licensed under cC BY 4.0.

3.3 Querying research maps: The global map

In addition to viewing the research maps of individual research articles, users can interact with all of
the public data and their individual private data via the global map. On this page, users can search

the application’s database either for a specific node (with a What, Where, and When) or simply for
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a term—e.g., the transcription factor CREB (Figure 3.5). In addition to searching for a single entity,
users can search for specific agent-target pairs, whether they are empirical or hypothetical. The
queries operate on the union of all the (local) research maps that exist in the application’s database.

To constrain the visualizations produced by queries, users can modify each global search
with several parameters, including a minimum and maximum threshold for filtering empirical edges
based on their CEls. By filtering out edges with low CEls, for example, users can visualize only those
edges with the highest levels of evidence—i.e., those that are likely to be more reliable. Similarly,
by filtering out edges with high CElIs, users can quickly identify those connections with the least
amount of evidence—i.e., those in greatest need of further investigation. Users can also limit the
number of edges that must be traversed between a given query term and its results. Additionally,
users can limit global searches to only the information that they personally entered, thus focusing
searches to specific domains of interest. By interacting with the information in ResearchMaps, users
can thus explore the ramifications of different hypotheses.

Clicking on any edge in the global map generates a table that lists all the empirical results and
hypothetical assertions represented by that edge (Figure 3.6). Also provided are hyperlinks to the

(local) research maps where this information was originally entered.

3.4 Data collected for analysis

Analyses presented in this dissertation use ResearchMaps data collected between 2013 and 2018.
The bulk of this data was entered by the neuroscientist Alcino J. Silva; over three years, he created
public research maps for 125 articles with 2,251 experiments, 1,293 nodes, and 1,693 edges. Fig-

ure 3.7 shows an aggregate of his research maps in memory allocation and other connected areas.

3.5 Details of the software implementation

The source code for ResearchMaps is publicly available at https://github.com/ResearchMaps/.
The application is currently hosted by Amazon Web Services (AWS) Elastic Compute Cloud (EC2)
with the Ubuntu 12.04 64-bit operating system.

ResearchMaps uses Node.js (https://nodejs.org/) as its runtime environment. HTML com-
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ponents are made with the Bootstrap framework (http://getbootstrap.com/), and D3.js [BOH11] is
used to modify the visualized research maps, which are created as SVG files with Graphviz [EGKO01].
JavaScript and the jQuery library (https://jquery.com/) are also used. PubMed’s application pro-
gramming interface (API) (http://eutils.ncbi.nlm.nih.gov) provides bibliographic information for
published research articles, and the NeuroLex API, maintained by the Neuroscience Information
Framework (NIF) [GAAO08], provides suggested auto-completions for users’ input.

ResearchMaps uses the Neo4j 2.2.1 graph database and its query language Cypher. The
database schema is designed as follows. Each user is assigned a User node, which is connected
to Paper nodes that represent each research article (or private project) for which a user creates a
research map. Each Paper node is connected to a number of Experiment nodes—one for each
experiment (or hypothetical assertion) that is entered for a given map. Each Experiment node is
connected to two NeurolexTerm nodes representing the agent and the target for that particular
experiment. Agent and target (NeurolexTerm) nodes are connected by edges with properties to

store the information used to calculate each edge’s CEL.
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Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1.

Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J, Ohno M, Kucherlapati R, Jacks T, Silva AJ Departments of Neurobiology,
Psychiatry and Psychology, BRI, University of California at Los Angeles, Los Angeles, California 90095-1761, USA.

Nature 2002 Jan 31;415(6871):526-30
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Figure 3.4: The local map of ResearchMaps. The form on the left is used to input information. The
citation on the top indicates the article whose research map is displayed. Highlighted in yellow are
edges that reflect the article’s main ideas. Users can double-click on any edge to retrieve PubMed
citations that are potentially relevant to the agent-target relation. © 2018 Matiasz et al. [MWD18];

licensed under cc BY 4.0.
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Figure 3.5: The global map of ResearchMaps. The form on the left is used to query all the research
maps in the application’s database. On the right is a panel that displays the research map returned

in response to the query. © 2018 Matiasz et al. [MWD18]; licensed under cCc BY 4.0.
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Figure 3.6: Provenance of edges in the global map. Each edge in the global map can be clicked,
revealing a table that lists every empirical result or hypothetical assertion recorded for that edge.
Each entry in this table has a link to the local research map that contains the edge that was clicked.

© 2018 Matiasz et al. [MWD18]; licensed under cC BY 4.0.
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Figure 3.7: This is Alcino Silva’s personally curated research map of work in the field of memory
allocation, as well as related work that either overlaps or connects to the work in memory allocation.
To minimize the number of nodes, only the What property of each node is shown, so that nodes with
different Where and When properties (but identical What properties) are collapsed into one. Nodes
in orange appear only in research maps for articles on memory allocation. Nodes in red appear not
only in research maps for articles on memory allocation but also in research maps of related work.

© 2018 Matiasz et al. [MWD18]; licensed under cC BY 4.0.
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CHAPTER 4

Collecting constraints on causal structure

Data that is collected from a system can be analyzed to identify conditional dependence and inde-
pendence relations among the system’s variables. These statistical relations can then be used to
infer the causal structure that governs the system from which the data was collected. This infer-
ence is permitted by bridge principles, which “connect what can be observed to the underlying causal
structure that generates the phenomena” [Ebe09]. In this dissertation, what can be observed is ex-
pressed as conditional (in)dependence relations; the underlying causal structure is expressed as a
causal graph. The bridge principles that connect (in)dependence relations to causal graphs are the
causal Markov and causal faithfulness conditions (§ 2.2). Together, these conditions allow for a
relation between conditional (in)dependencies in a probability distribution and specific structures
in a causal graph [SGS00]. For instance, if two variables in a system are statistically dependent,
the system’s causal graph will have certain features, such as one or more paths that correspond to
this statistical dependence. The (in)dependence relations obtained from a system thus constrain
which causal structures can accurately describe the system, and such relations can serve as inputs
to constraint-based causal discovery algorithms (e.g., [HHE13, HEJ14]).

We express causal-structure constraints in the form X' 1L Y| C || J, where X and Y are two
variables involved in an independence relation; C is a (possibly empty) set of variables on which we
must statistically condition for the relation to hold; and J is a (possibly empty) set of variables that
underwent experimental intervention when the relation manifested [HE]J14]. Dependence state-
ments instead use the “nor-independent” symbol ( L ). The empty-set symbol ( @ ) is used to de-

note empty sets for C and J. An example of an (in)dependence relation is
long-term potentiation [ spatial learning | @ || long-term potentiation,

which states that long-term potentiation and spatial learning were observed to be (unconditionally)
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dependent in an experiment that intervened on long-term potentiation.

Below, § 4.1 describes how research-map annotations of the literature can be translated into
formal constraints on causal structure for use in constraint-based causal discovery, which is pre-
sented in Chapter 5. I refer the reader to Eberhardt [Ebe17] for a discussion of how one can formalize

background assumptions to further constrain the search over causal structures.

4.1 Annotating empirical results in literature

Although the primary data for many studies remains inaccessible to most researchers, research
articles commonly report statistical information that can be formalized as constraints on causal
structure. Examples of this information include statistical tests for the correlation between mea-
sured variables. A research map that captures this statistical information can thus be translated
into (in)dependence relations, to be used for constraint-based causal discovery. Table 4.1 presents
this translation for research map annotations involving two phenomena, one agent and one target.
In this translation, a research map’s distinction between a positive correlation (an excitatory rela-
tion) and negative correlation (an inhibitory relation) is discarded in the causal-structure constraint:
these cases are both mapped to a dependence relation ( £ ). (In § 9.5.5, I discuss the possibility of
incorporating this sign information into the search over causal structures.)

A research map is not the only representation that can be used to represent causal-structure
constraints from the literature. In principle, one could use any representation with all the com-
ponents required to instantiate an (in)dependence relation. Research maps were used for the work
pr