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Biological pathway diagrams resemble causal graphs
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Biological pathway diagrams can’t be stitched together
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The research map representation
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The Essential Role of Hippocampal CA1
NMDA Receptor-Dependent
Synaptic Plasticity in Spatial Memory
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Constraint on causal structure

XILY|C|lJ
X and Y are independent, conditioned on set C, intervening on set J

XLY|[C|lJ
X and Y are dependent, conditioned on set C, intervening on set J

C and J can be the empty set (&)
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Constraint-based Causal Discovery:
Conflict Resolution with Answer Set Programming [6]

Antti Hyttinen and Frederick Eberhardt

California Institute of Technology
Pasadena, CA, USA

Abstract

Recent approaches to causal discovery based on
Boolean satisfiability solvers have opened new
opportunities to consider search spaces for causal
models with both feedback cycles and unmea-
sured confounders. However, the available meth-
ods have so far not been able to provide a prin-
cipled account of how to handle conflicting con-
straints that arise from statistical variability. Here
we present a new approach that preserves the ver-
satility of Boolean constraint solving and attains
a high accuracy despite the presence of statisti-

Matti Jarvisalo
HIIT & Department of Computer Science
University of Helsinki, Finland

faithfulness (Spirtes et al., 1993). Unlike many other ap-
proaches, these constraint-based causal discovery methods
can allow for the presence of latent confounders, feedback
cycles and the utilisation of several (partially overlapping)
observational or experimental data sets.

Even without experimentation (or additional assumptions,
such as time order), and despite the generality of the model
space, constraint-based methods can infer some causal ori-
entations on the basis of v-structures (unshielded colliders).
A v-structure in a graph is a triple of variables, such as
(x,z,y) in Figure 1, where z is a common child of = and y,
but x and y are non-adjacent in the graph. V-structures can
be identified because of the specific (in)dependence rela-
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With conflicting constraints, we minimize G* € argI(I}liIgl E w(k) [6]
c
the summed weight of unsatisfied constraints. kK Gk
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