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Peer review would change too. Instead of a few reviewers looking at

the entire manuscript, several would do so, each focusing closely on a
particular substudy. In this way, submissions that use multiple, diverse
techniques will get appropriate scrutiny, helping to avoid the
publication of papers that are like “grand mansions of straw".

Finally, tunders, research institutions and journals would need to
explicitly support publication of weightier articles. Or perhaps we need
to develop formal ways — beyond simple citations — to explicitly link
and recognize substudies that triangulate a single question.

A proposal published early last year advocated for a new category of
paper that combines hypothesis-generating work with robust, pre-
registered confirmatory studies conducted by qualified independent
labs”. Papers involving triangulation in a way we propose will clearly
often involve considerable work coordinating groups of researchers
from different disciplines. Reviewers and tenure committees should
find ways to value them appropriately.

Nature 553, 399-401 (2018)
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New Bayesian CEl
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New Bayesian CEIl: convergence

+ 0, —
(2 1 0.500 - % = 0.2500
" ] ]
|l
z* 1 1 (2
v 11 (2

P(Excitatory) = V4 (%4 + %4+ %4+ %) =0.500
P(None) = (4 + %+ % +%) =0.250

P(Inhibitory) = (%4 + % + % + %) =0.250



Comparison of old & CEls

0.50

OOO | | | | | |

Consistency Convergence



New Bayesian CEl: divergence

Scientists tend to trust evidence from a particular
study class to the extent that studies within this class

yleld consistent results.

Conflicting information within a study class limits the

amount that the study class can add to the score.
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Abstract

To plan experiments, a biologist needs to evaluate a growing set of empirical findings and
hypothetical assertions from diverse fields that use increasingly complex techniques. To
address this problem, we operationalized principles (e.g., convergence and consistency)
that biologists use to test causal relations and evaluate experimental evidence. With the
framework we derived, we then created a free, open-source web application that allows
biologists to create research maps, graph-based representations of empirical evidence

and hypothetical assertions found in research articles, reviews, and other sources. With our
ResearchMaps web application, biologists can systematically reason through the research
that is most important to them, as well as evaluate and plan experiments with a breadth and
precision that are unlikely without such a tool.

Introduction

Information in biology falls into at least two categories: (1) the information that individual biol-
ogists curate from articles they read, and (2) the vast body of other information that biologists
can access, at least in principle, through resources like PubMed. Most informatics tools target
the second category: the literature’s accelerating growth makes it exceedingly impractical for
biologists to find all the information that is relevant to their work. But even within the first cate-
gory, it is ever more difficult for biologists to synthesize the information that they personally
curate. Part of this challenge is caused by the increasing complexity of biological research.
Individual biologists must now keep track of empirical findings and hypothetical assertions
from diverse fields that use a growing number of sophisticated techniques. Perhaps an even

PLOS ONE | https://doi.org/10.1371/journal.pone.0195271 May 3, 2018 1/25
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Quantifying the convergence
of evidence

The replication crisis may be misdiagnosed. Science

needs a more holistic view of evidence.

Nicholas J. Matiasz and Alcino J. Silva

For 40 years, meta-analysis has comprised increasingly sophisticated
methods for quantifying an important aspect of evidence: its consistency,
or replicability’. But meta-analysis does not explicitly quantify another
crucial aspect of evidence: its convergence, the extent to which a
hypothesis is supported by very different types of studies. This second
aspect of evidence — often called triangulation — has long been
acknowledged for its importance and has been highlighted recently as a
strategy to address the replication crisis®>. We prefer the term
convergence because scientists can evaluate more than three different

lines of evidence.

To address this gap in meta-analysis, we developed a Bayesian model of
scientific consensus that expresses both consistency and convergence®.

On the basis of this Bayesian model, we defined a numerical score called
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Planning toward Causal Discovery in
Neuroscience

Nicholas J. Matiasz "2, Justin Wood? 3, Wei Wang?, Alcino J. Silva? and William Hsu "
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Computers help neuroscientists to analyze experimental results by automating the
application of statistics; however, computer-aided experiment planning is far less
common, due to a lack of similar quantitative formalisms for systematically assessing
evidence and uncertainty. While ontologies and other Semantic Web resources help
neuroscientists to assimilate required domain knowledge, experiment planning requires
not only ontological but also epistemological (e.g., methodological) information regarding
how knowledge was obtained. Here, we outline how epistemological principles and
graphical representations of causality can be used to formalize experiment planning
toward causal discovery. We outline two complementary approaches to experiment
planning: one that quantifies evidence per the principles of convergence and consistency,
and another that quantifies uncertainty using logical representations of constraints on
causal structure. These approaches operationalize experiment planning as the search
for an experiment that either maximizes evidence or minimizes uncertainty. Despite work
in laboratory automation, humans must still plan experiments and will likely continue to
do so for some time. There is thus a great need for experiment-planning frameworks
that are not only amenable to machine computation but also useful as aids in human
reasoning.

Keywords: epistemology, experiment planning, research map, causal graph, uncertainty quantification,
information gain

1. INTRODUCTION

Much of the work in neuroscience involves planning experiments to identify causal mechanisms;
however, neuroscientists do not use computers to plan future experiments as effectively as they
use them to analyze past experiments. When neuroscientists perform experiments, analyze data,
and report findings, they do much to ensure that their work is objective: they follow precise lab
protocols so that their experiments are reproducible; they employ rigorous statistical methods
to show that their findings are significant; and they submit their manuscripts for peer review
to build consensus in their fields. In contrast, experiment planning is usually less formal. To
plan experiments, neuroscientists find and read relevant literature, synthesize available evidence,
and design experiments that would be most instructive, given what is known. Unfortunately,
neuroscientists lack tools for systematically navigating and integrating a set of findings, and for

Frontiers in Neuroinformatics | www.frontiersin.org 1 February 2017 | Volume 11 | Article 12
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WHEN SCIENTISTS SEEK TO LEARN NEW,
interesting truths, to find important patterns
hiding In vast arrays of data, they are often
trying to do something like searching for a
needle in a really huge haystack of falsehoods,
for a correct network among many possible
networks...

— CLARK GLYMOUR
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Findings in the literature can be expressed

as statistical (in)dependence statements
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Neuronal Competition and Selection
During Memory Formation

Jin-Hee Han,%?3* Steven A. Kushner,*>** Adelaide P. Yiu,® Christy ]. Cole, "+
Anna Matynia,* Robert A. Brown,* Rachael L. Neve,” John F. Guzowski,?

Alcino J. Silva,* Sheena A. Josselyn®?31

Competition between neurons is necessary for refining neural circuits during development and
may be important for selecting the neurons that participate in encoding memories in the adult
brain. To examine neuronal competition during memory formation, we conducted experiments with
mice in which we manipulated the function of CREB (adenosine 3,5 -monophosphate response
element—binding protein) in subsets of neurons. Changes in CREB function influenced the probability
that individual lateral amygdala neurons were recruited into a fear memory trace. Our results suggest a
competitive model underlying memory formation, in which eligible neurons are selected to participate
in @ memory trace as a function of their relative CREB activity at the time of learning.

ompetition is a fundamental property of
‘ many biological systems and creates

selective pressure between individual
clements. For example, competition between
bilateral monocular neural inputs mediates ocu-
lar dominance plasticity (/, 2). The transcription
factor CREB (adenosine 3’,5’-monophosphate
response element-binding protein) has been
implicated in this competition in the devel-
oping brain (3, 4). The finding that only a por-
tion of eligible neurons participate in a given
memory (5-8) suggests that competition be-
tween neurons may also underlie plasticity in
adult brain.

Plasticity within the lateral amygdala (LA) is
required for auditory conditioned-fear memories
(7, 9-11). Although ~70% of LA neurons receive
the necessary sensory input, only one-quarter
exhibit auditory fear conditioning—induced plas-
ticity (6, 7). We found that a similar proportion

*Program in Neurosciences and Mental Health, Hospital for
Sick Children, 555 University Avenue, Toronto, Ontario
M5G 1X8, Canada. Department of Physiology, University
of Toronto, Toronto, Ontario M55 1A8, Canada. *Institute
of Medical Sciences, University of Toronto, Toronto,
Ontario M55 1A8, Canada. 4Departments of Neurobiolo-
gy, Psychology, and Psychiatry, and Brain Research Institute,
Gonda Building, 695 Young Drive South, University of
California, Los Angeles, CA 90095, USA. 5Department of
Psychiatry, Columbia University, New York, NY 10032,
USA. ®New York State Psychiatric Institute, New York, NY
10032, USA. "Molecular Neurogenetics Laboratory, De-
partment of Psychiatry, Harvard Medical School, McLean
Hospital, Belmont, MA 02478, USA. 8Neurobiology and
Behavior, School of Biological Sciences, University of
California, Irvine, CA 92697, USA.

*These authors contributed equally to this work.
1To whom correspondence should be addressed. E-mail:
sheena.josselyn@sickkids.ca

of LA cells show activated CREB (phosphoryl-
ation at Ser'*) after auditory fear conditioning
(Fig. 1A), which suggests a role for CREB in

s
o

% pCREB P
L]
(=]
L

determining which neurons are recruited into the
fear memory trace. To examine this result, we
manipulated CREB function in a similar portion
of LA neurons by microinjecting replication-
defective herpes simplex viral vectors express-
ing endogenous or dominant-negative CREB
(CREB™T and CREB®'**4 respectively) fused
with green fluorescent protein (GFP) (12).

To maximize the relative difference in CREB
function between neurons, we first increased
CREB levels in a subset of LA neurons in mu-
tant mice that have reduced CREB function.
Mice lacking the major isoforms of CREB (a
and 8; CREB-deficient mice) show deficits in
developmental and adult plasticity, including
auditory fear memory (73, 74) (Fig. 1B and fig.
S1A). We microinjected CREBYT or control
vector into the LA of CREB-deficient or wild-
type littermate mice before fear conditioning and
assessed memory (the percentage of time mice
spent freezing during subsequent tone presen-
tation) 24 hours later. Although CREBYT vector
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Fig. 1. Auditory fear conditioning activates CREB in ~20% of LA cells in wild-type (WT) mice;
increasing CREB function in a similar portion of LA neurons rescues the fear memory deficit in
CREB-deficient mice. (A) Percentages of LA cells expressing phosphorylated CREB after fear
conditioning (tone + shock, n = 6) was higher than after control conditions [tone alone (n = 4),
immediate shock (n = 4), exposure to chamber (n = 4), or homecage control (n = 4), F(4,17) =
5.36, P < 0.05]. Error bars in all figures represent SEM. (B) CREB-deficient (CREB™") mice show
impaired auditory fear memory [F(1,20) = 24.23, P < 0.05; WT n = 12, CREB-deficient n = 10]. (C)
Left: Outline of the LA. Right: Roughly 20% of LA neurons expressed GFP after infusion of CREB""
vector [top, nuclei stained with 47,6 "-diamidino-2-phenylindole (DAPI); bottom, GFP]. Scale bar,
250 um. (D) Microinjection of control vector (Cntrl; n = 8) or CREB"" vector (n = 9) did not change
the high freezing in WT mice, whereas microinjection of CREBY vector (n = 9), but not control
vector (n = 8), into the LA of CREB-deficient mice rescued this memory deficit [Genotype x Vector

F(1,30) = 6.64, P < 0.05].
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the effects of increasing CREB function in wild-
type mice. Increasing CREB function enhanced
memory (Fig. 3A), consistent with results in flies
(16), Aplysia (17), rats (18, 19), and hamsters
(20). Furthermore, the probability of detecting
Arc’ nuclei was higher by a factor of ~3 in neu-
rons with CREB™T vector (65.8 + 5.0%) than
in neighboring neurons (21.9 + 4.2%) (Fig. 3A
and fig. S3), similar to the distribution of Arc
observed in wild-type mice trained with a more
intense protocol.

These imaging data could be simply ex-
plained if increasing CREB function directly
induces Arc transcription. Previous findings do
not support this idea (217), likely because the Arc
promoter lacks a consensus CRE site (22).
Nonetheless, to examine whether neurons with
increased CREB function were more likely than
their neighbors to be Arc” independent of fear
conditioning, we microinjected CREBYT vector
into the LA of wild-type mice that were not fear-
conditioned. If increasing CREB function is
sufficient to induce Arc expression, then neurons
with CREBYT vector should be more likely than
neighboring neurons to be Arc’. However, the
distribution of Arc" nuclei was similar in neurons
with and without CREB"" vector in these home-
cage mice (Fig. 3B). Because CREB may not be
transcriptionally active under these conditions,
we infused a vector encoding a constitutively
active form of CREB [CREBY'** (23)]. Again,

Fig. 3. Relative CREB
function influences the
recruitment of neurons
into the memory trace.
(A) Left: Proportion of
Arc" LA neurons in WT
mice with CREB"T vector.
Middle: Arc* nuclei were
more likely to be in neu-
rons with CREBYT vector
(GFP*) than in nonin-
fected (GFPT) neurons
[F(1,3) = 23.62, P <
0.05]. Right: CREB" vec-
tor enhanced memory in
WT mice trained with low-
intensity shock [F(1,11) =
7.31, P < 0.05, control
n=17, CREB"T vector n =
6. (B and € Middle:
Proportion of Arc* LA
neurons in untrained WT
mice with CREB"" (B)
or constitutively active - e e
X 'I;r n.é| Test :I

CREBY*3**F (C) vector. WT ! Trai
Left: Neurons contain- - )L
ing CREB"" (B) or consti-
tutively active CREBY*F

neurons with increased CREB function (with
CREBY"** vector) were no more likely to be Arc™
than their neighbors (Fig. 3C). Therefore, in-
creasing CREB function in a subset of LA
neurons in untrained mice does not affect the
distribution of Arc, which highlights the impor-
tance of training and learning (fig. S4) in the
preferential localization of Arc in neurons with
increased CREB function.

Alternatively, neurons with increased CREB
function may have a lower threshold for inducing
Arc transcription that only becomes apparent in
the fear memory test. We therefore microinjected
wild-type mice with CREB™" vector 24 hours
after training. Mice were tested 4 days after
infusion and the distribution of Arc” was quan-
tified. If the fear memory trace is consolidated in
the LA within 24 hours after training (24, 25), a
preferential distribution of Arc in neurons with
increased CREB function would not be expected.
Although Arc” levels were comparable to those
found in previous experiments in which wild-type
mice were fear-conditioned (25.4 + 4.0%), Arc
was not preferentially localized in neurons with
increased CREB function [CREB™T vector =
9.7 +1.6%, endogenous = 28.4 + 3.7%, F(1,4) =
27.58, P < 0.05]. Together, these data suggest
that increased CREB function enhances neuronal
selection only during sufficiently salient learning.

We next investigated the effects of decreasing
CREB function in a similar portion of LA neurons.
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(Q) vector (GFP*) were no more likely than noninfected neurons (GFP™) to be Arc* in untrained mice (P >
0.05). (D) Neurons with decreased CREB function were less likely to be recruited to the memory trace.

Left: Proportion of Arc* LA neurons. Middle: Arc* nuclei were less likely to be in neurons with CRE

B5133A

vector (GFP") than in noninfected neurons (GFP”) [F(1,2) = 405.28, P < 0.05]. Right: WT mice infused
with CREB***** vector show normal memory, even when trained with a lower-intensity shock [F(1,13) =

2.08, P > 0.05; control n = 7, CREBS**3* p = 8.
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We hypothesized that memory would be normal
because the remaining neurons with intact CREB
function would outcompete this subset for inclu-
sion in the memory trace. Wild-type mice were
microinjected with a vector expressing a dominant-
negative form of CREB (CREBS'***) before audi-
tory fear training. Indeed, these mice showed
normal memory (Fig. 3D). Consistent with this,
the probability of detecting Arc” nuclei was lower
by a factor of ~12 in neurons with CREBS!33
vector (2.7 £ 0.6%) than in neurons without it
(33.7 £ 0.9%) (Fig. 3D).

Together, these data provide evidence for
neuronal selection during memory formation.
The overall size of the Arc” fear memory trace
was both consistent with electrophysiological
estimates of the fear memory trace (6, 7) and
stable across experiments in fear-conditioned
wild-type mice (Fig. 4A). That a constant pro-
portion of LA neurons is recruited to the memory
trace, regardless of CREB manipulation, suggests
that the rules governing neuronal selection during
memory formation are competitive rather than
cell-autonomous. If neuronal selection were cell-
autonomous, the size of the Arc” memory trace
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Fig. 4. Constant size of Arc* memory trace
suggests competitive selection process. (A)
Proportion of LA Arc* neurons did not differ
in fear-conditioned WT mice, regardless of
vector [CREB"", control, CREB****#] or training
intensity [high (0.75-mA shock) or low (0.4-mA
shock)] [F(3,12) = 0.31, P < 0.05]. (B)
Distribution of Arc* varied according to CREB
manipulation. First and second pairs of bars:
Arc* nuclei were more likely to be in neurons
with high CREB function (with CREB"" vector;
GFP*, green) than in noninfected neighbors
(GFP~, blue) in WT mice trained with high (first
pair) or low (third pair) intensities. Third pair of
bars: Arc* nuclei were equally distributed in
neurons with (GFP*, green) and without (GFP~,
blue) control vector. Fourth pair of bars: Arc*
nuclei were less likely to be in neurons with
decreased CREB function (with CREB*'33%
vector; GFP*, green) relative to neighbors with
intact CREB function (GFP™, blue).
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Competition between neurons is necessary for refining neural circuits during development and
may be important for selecting the neurons that participate in encoding memories in the adult
brain. To examine neuronal competition during memory formation, we conducted experiments with
mice in which we manipulated the function of CREB (adenosine 3,5 -monophosphate response
element—binding protein) in subsets of neurons. Changes in CREB function influenced the probability
that individual lateral amygdala neurons were recruited into a fear memory trace. Our results suggest a
competitive model underlying memory formation, in which eligible neurons are selected to participate
in @ memory trace as a function of their relative CREB activity at the time of learning.

ompetition is a fundamental property of
‘ many biological systems and creates

selective pressure between individual
clements. For example, competition between
bilateral monocular neural inputs mediates ocu-
lar dominance plasticity (/, 2). The transcription
factor CREB (adenosine 3’,5’-monophosphate
response element-binding protein) has been
implicated in this competition in the devel-
oping brain (3, 4). The finding that only a por-
tion of eligible neurons participate in a given
memory (5-8) suggests that competition be-
tween neurons may also underlie plasticity in
adult brain.

Plasticity within the lateral amygdala (LA) is
required for auditory conditioned-fear memories
(7, 9-11). Although ~70% of LA neurons receive
the necessary sensory input, only one-quarter
exhibit auditory fear conditioning—induced plas-
ticity (6, 7). We found that a similar proportion
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determining which neurons are recruited into the
fear memory trace. To examine this result, we
manipulated CREB function in a similar portion
of LA neurons by microinjecting replication-
defective herpes simplex viral vectors express-
ing endogenous or dominant-negative CREB
(CREB™T and CREB®'**4 respectively) fused
with green fluorescent protein (GFP) (12).

To maximize the relative difference in CREB
function between neurons, we first increased
CREB levels in a subset of LA neurons in mu-
tant mice that have reduced CREB function.
Mice lacking the major isoforms of CREB (a
and 8; CREB-deficient mice) show deficits in
developmental and adult plasticity, including
auditory fear memory (73, 74) (Fig. 1B and fig.
S1A). We microinjected CREBYT or control
vector into the LA of CREB-deficient or wild-
type littermate mice before fear conditioning and
assessed memory (the percentage of time mice
spent freezing during subsequent tone presen-
tation) 24 hours later. Although CREBYT vector

of LA cells show activated CREB (phosphoryl-
ation at Ser'*) after auditory fear conditioning
(Fig. 1A), which suggests a role for CREB in
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Fig. 1. Auditory fear conditioning activates CREB in ~20% of LA cells in wild-type (WT) mice;
increasing CREB function in a similar portion of LA neurons rescues the fear memory deficit in
CREB-deficient mice. (A) Percentages of LA cells expressing phosphorylated CREB after fear
conditioning (tone + shock, n = 6) was higher than after control conditions [tone alone (n = 4),
immediate shock (n = 4), exposure to chamber (n = 4), or homecage control (n = 4), F(4,17) =
5.36, P < 0.05]. Error bars in all figures represent SEM. (B) CREB-deficient (CREB™") mice show
impaired auditory fear memory [F(1,20) = 24.23, P < 0.05; WT n = 12, CREB-deficient n = 10]. (C)
Left: Outline of the LA. Right: Roughly 20% of LA neurons expressed GFP after infusion of CREB""
vector [top, nuclei stained with 47,6 "-diamidino-2-phenylindole (DAPI); bottom, GFP]. Scale bar,
250 um. (D) Microinjection of control vector (Cntrl; n = 8) or CREB"" vector (n = 9) did not change
the high freezing in WT mice, whereas microinjection of CREBY vector (n = 9), but not control
vector (n = 8), into the LA of CREB-deficient mice rescued this memory deficit [Genotype x Vector
F(1,30) = 6.64, P < 0.05].

www.sciencemag.org SCIENCE VOL 316 20 APRIL 2007

457

Downloaded from www.sciencemag.org on December 15, 2014

the effects of increasing CREB function in wilg
type mice. Increasing CREB function enhagg®

neurons with increased CREB function (with
CREBY"** vector) were no more likely to be Arc™
than their neighbors (Fig. 3C). Therefore, in-

neurons in untrained mice does not affect the
distribution of Arc, which highlights the impor-
tance of training and learning (fig. S4) in the
preferential localization of Arc in neurons with
increased CREB function.

Alternatively, neurons with increased CREB
function may have a lower threshold for inducing
Arc transcription that only becomes apparent in
the fear memory test. We therefore microinjected
wild-type mice with CREB™" vector 24 hours
after training. Mice were tested 4 days after
infusion and the distribution of Arc” was quan-
tified. If the fear memory trace is consolidated in
the LA within 24 hours after training (24, 25), a
preferential distribution of Arc in neurons with
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wild-type mice (Fig. 4A). Tat a constant pro-
portion of LA neurons is recruifd to the memory
trace, regardless of CREB manipation, suggests
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Fig. 4. Constant size of Arc* memory trace
suggests competitive selection process. (A)
Proportion of LA Arc* neurons did not differ
in fear-conditioned WT mice, regardless of
vector [CREB"", control, CREB****#] or training
intensity [high (0.75-mA shock) or low (0.4-mA
shock)] [F(3,12) = 0.31, P < 0.05]. (B)
Distribution of Arc* varied according to CREB
manipulation. First and second pairs of bars:
Arc* nuclei were more likely to be in neurons
with high CREB function (with CREB"" vector;
GFP*, green) than in noninfected neighbors
(GFP~, blue) in WT mice trained with high (first
pair) or low (third pair) intensities. Third pair of
bars: Arc* nuclei were equally distributed in
neurons with (GFP*, green) and without (GFP~,
blue) control vector. Fourth pair of bars: Arc*
nuclei were less likely to be in neurons with
decreased CREB function (with CREB*'33%
vector; GFP*, green) relative to neighbors with
intact CREB function (GFP™, blue).
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Competition between neurons is necessary for refining neural circuits during development and
may be important for selecting the neurons that participate in encoding memories in the adult
brain. To examine neuronal competition during memory formation, we conducted experiments with
mice in which we manipulated the function of CREB (adenosine 3,5 -monophosphate response
element—binding protein) in subsets of neurons. Changes in CREB function influenced the probability
that individual lateral amygdala neurons were recruited into a fear memory trace. Our results suggest a
competitive model underlying memory formation, in which eligible neurons are selected to participate
in @ memory trace as a function of their relative CREB activity at the time of learning.
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Constraint-based Causal Discovery:
Conflict Resolution with Answer Set Programming

Antti Hyttinen and Frederick Eberhardt
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Abstract

Recent approaches to causal discovery based on
Boolean satisfiability solvers have opened new
opportunities to consider search spaces for causal
models with both feedback cycles and unmea-
sured confounders. However, the available meth-
ods have so far not been able to provide a prin-
cipled account of how to handle conflicting con-
straints that arise from statistical variability. Here
we present a new approach that preserves the ver-
satility of Boolean constraint solving and attains
a high accuracy despite the presence of statisti-
cal errors. We develop a new logical encoding
of (in)dependence constraints that is both well

Matti Jarvisalo
HIIT & Department of Computer Science
University of Helsinki, Finland

faithfulness (Spirtes et al., 1993). Unlike many other ap-
proaches, these constraint-based causal discovery methods
can allow for the presence of latent confounders, feedback
cycles and the utilisation of several (partially overlapping)
observational or experimental data sets.

Even without experimentation (or additional assumptions,
such as time order), and despite the generality of the model
space, constraint-based methods can infer some causal ori-
entations on the basis of v-structures (unshielded colliders).
A v-structure in a graph 1s a triple of variables, such as
(x, z,y) in Figure 1, where z is a common child of x and v,
but  and y are non-adjacent in the graph. V-structures can
be identified because of the specific (in)dependence rela-
tions they imply (here, z £ z, z £ y and x I y are jointly
sufficient to identifv the v-structure). The edges that are
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Summary

We have produced a mouse strainin which the deletion
of the NMDAR1 geneis restricted to the CA1 pyramidal
cells of the hippocampus by using a new and general
method that allows CA1-restricted gene knockout.
The mutant mice grow into adulthood without obvi-
ous abnormalities. Adult mice lack NMDA receptor-
mediated synaptic currents and long-term potentia-
tion in the CA1 synapses and exhibit impaired spatial
memory but unimpaired nonspatial learning. Our re-
sults strongly suggest that activity-dependent modifi-
cations of CA1 synapses, mediated by NMDA recep-
tors, play an essential role in the acquisition of spatial
memories.

Introduction

It has long been hypothesized that memory storage in
the mammalian brain involves modifications of the syn-
aptic connections between neurons. Hebb (1949) intro-
duced an influential theory consisting of principles that
neurons must exhibit for implementing associative
memory. An important principle, known as the Hebb
rule, is that of “correlated activity”: when the presynaptic
and the postsynaptic neurons are active simultaneously,
their connections become strengthened. It is well estab-
lished that N-methyl-p-aspartate receptors (NMDARs)
can implement the Hebb rule at the synaptic level, and
they are thus considered the crucial synaptic elements
for the induction of activity-dependent synaptic plastic-
ity. NMDARs act as coincidence detectors because they
require both presynaptic activity (glutamate released by
axonal terminals) and postsynaptic activity (depolariza-
tion that releases the Mg?*" block) as a condition for
channel opening (Nowak et al., 1984; McBain and Mayer,
1994). Active NMDAR channels allow calcium influx into
the postsynaptic cell, which triggers a cascade of bio-
chemical events resulting in synaptic change. Long-term
potentiation (LTP) is a widely used paradigm forincreas-
ing synaptic efficacy, and its induction requires, in at
least one of its forms, the activation of NMDARs (Bliss
and Lemo, 1973; Bliss and Collingridge, 1993). Conven-
tionally, NMDAR-dependent LTP is elicited by giving a
strong pattern of electrical stimulation (a 25-100 Hz train
for ~1 s) to the inputs, which triggers a rapid and lasting
increase in synaptic strength.

The hippocampus is the most intensely studied region
for the importance of NMDARs in synaptic plasticity and

memory. It is well known that lesions of the hippocam-
pus in humans and other mammals produce severe am-
nesia for certain memories (Scoville and Milner, 1957;
Morris et al., 1982; Zola-Morgan et al., 1986; reviewed
by Squire, 1987). Importantly, it has been demonstrated
that disruption of NMDARs in the hippocampus leads
to blockade of synaptic plasticity and also to memory
malfunction (reviewed by Morris et al., 1991; Rawlins,
1996). For instance, application of NMDAR antagonists
(such as 2-amino-5-phosphonopropionic acid [AP5])
completely blocks the induction of LTP in most hippo-
campal synapses (Collingridge et al., 1983; Zalutsky and
Nicoll, 1990; Hanse and Gustafsson, 1992). Morris et al.
(1986) were the first to show that rats that received
infusion of AP5 into the hippocampus were deficient in
performing a spatial memory task in which the animals
are required to form multiple spatial relations between
a hidden platform in a circular pool (known as a water
maze) and visible objects in the surrounding environ-
ment and swim to the platform to escape from the water.
Subsequently, this issue was reinvestigated by using
“gene knockout” mice. These genetically engineered
mice lack a gene encoding a component that is thought
to be at the downstream of activated NMDARs in the
biochemical cascade for LTP induction (reviewed by
Chen and Tonegawa, 1997). For example, mice with a
deletion in the gene encoding the a subunit of calcium-
calmodulin-dependent protein kinase Il («CaMKIl) dis-
play impaired LTP in the CA1 region of the hippocampus
and a deficit in spatial learning (Silva et al., 1992a,
1992b).

Even though the results of these genetic and pharma-
cological experiments are consistent with the notion
that hippocampal LTP is the synaptic mechanism for
spatial memory, other interpretations cannot be ex-
cluded. For instance, in the case of the gene knockout
mice, every cell in the organism lacks the gene of inter-
est. Consequently, all of the functions of the gene prod-
uct, not only its role in LTP induction, are affected in
the mutants. Hence, it is possible that spatial memory
is independent of hippocampal LTP and that the memory
deficit in mutants arises from lack of the gene product
in other functions (such as developmental roles). Like-
wise, in pharmacological studies the target of the AP5
infusion is not restricted to the hippocampus (Butcher
et al., 1991). Therefore, NMDARs expressed in neurons
in the neighboring neocortex (and other brain areas)
are also inhibited to a varying extent. Since NMDARs
contribute substantially to the basal synaptic transmis-
sion of excitatory synapses in the neocortex (reviewed
by Hestrin, 1996), it is likely that the infused AP5 may
impair not only LTP induction in the hippocampus but
also the computational ability of neocortical regions that
play an important role in spatial memory.

A way to circumvent the aforementioned problems
is to modify the gene knockout method such that the
deletion is restricted to a certain region or a certain cell
type within the brain. As described in the accompanying
article (Tsien et al., 1996 [this issue of Cell]), we have
exploited the Cre/loxP recombination system derived
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Autophosphorylation at Thr**® of the «
Calcium-Calmodulin Kinase I
in LTP and Learning

Karl Peter Giese, Nikolai B. Fedorov, Robert K. Filipkowski,
Alcino J. Silva*

The calcium-calmodulin—dependent kinase Il (CaMKI|) is required for hippocampal long-
term potentiation (LTP) and spatial learning. In addition to its calcium-calmodulin (CaM)—
dependent activity, CaMKIl can undergo autophosphorylation, resulting in CaM-inde-
pendent activity. A point mutation was introduced into the «CaMKII gene that blocked
the autophosphorylation of threonine at position 286 (Thr288) of this kinase without
affecting its CaM-dependent activity. The mutant mice had no N-methyl-D-aspartate
receptor—dependent LTP in the hippocampal CA1 area and showed no spatial learning
in the Morris water maze. Thus, the autophosphorylation of «CaMKII at Thr?8¢ appears

to be required for LTP and learning.

Long—lasting changes in synaptic strength
(such as LTP) are thought to underlie learn-
ing and memory (1). Pharmacological and
genetic lesions of CaMKII impair LTP and
learning (2—4). Additionally, increasing the
concentrations of constitutively active
CaMKII affects LTP and learning (5, 6). A
model has been proposed that suggests that
the autophosphorylated CaM-independent
(constitutively active) state of CaMKII is
crucial for LTP and learning (7). Autophos-
phorylation at Thr?®® endows aCaMKII
with the ability to switch from a CaM-
dependent to a CaM-independent state (8).
Consistent with the model, LTP induction
triggers a long-lasting increase in the auto-
phosphorylated form of CaMKII (9, 10) and
in its CaM-independent activity (11). These
studies, however, do not demonstrate that
the autophosphorylation of CaMKII is re-
quired for either LTP or learning.

To determine whether the autophospho-
rylation of aCaMKII at Thr?%° is required for
LTP and learning, we substituted Thr?%¢ (T)
for alanine (A) (T286A). The T286A mu-
tation results in a kinase that is unable to
switch to its CaM-independent state (8). We
used a gene-targeting strategy that utilizes a
replacement vector containing the point
mutation and a neo gene flanked by loxP
sites (the Pointlox procedure) (Fig. 1, A and
B) (12). All of the homozygous mutants
analyzed were F2 mice from a cross between
the chimeras (contributing 129 background)
and C57BL/6 mice («CaMKIT286A-129B6F2)
Immunoblotting and immunocytochemical
analyses (Fig. 1, C to E) determined that
the point mutations and the loxP site did
not alter the expression of the aCaMKII

K. P. Giese, N. B. Fedorov, A. J. Silva, Cold Spring Har-
bor Laboratory, Cold Spring Harbor, NY 11724, USA.
R. K. Filipkowski, Department of Neurophysiology,
Nencki Institute, PL-02-093 Warsaw, Poland.
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gene (13). We confirmed that the
aCaMKIIT286A-129B6F2 1 yration decreased
the total CaM-independent CaMKII ac-
tivity in the mutants but did not affect
their CaM-dependent activity (14). The
residual CaM-independent activity in the
mutants was presumably due to BCaMKII
(13, 15).

Long-term potentiation was tested in

the aCaMKIIT286A-129B6F2 1y tants with ex-
tracellular field recordings in the stratum

radiatum of hippocampal slices (16). We
focused our studies on the CA1 region be-
cause this region is important for learning
(17). Long-term potentiation induced with
a 100-Hz tetanus (1 s) was deficient in the
aCaMKIIT286A-129B6E2 pyyeants (Fig. 2A).
Sixty minutes after the tetanus, the mutants
(seven mice, seven slices) showed 110.8
+6.2% potentiation, whereas wild-type
mice (10 mice, 10 slices) showed 153.5 *=
7.5% potentiation. There was no overlap in
the extent of potentiations in wild-type
and mutant slices (Fig. 2B). We also de-
termined that other stimulation protocols
revealed similar LTP impairments in the
aCaMKI[T286A-129B6F2 yyrants (Fig. 2C).
These LTP impairments were not caused
by prepotentiation of synaptic transmis-
sion, because the relation between evoked
fiber volleys and field excitatory postsyn-
aptic potentials (fEPSPs) was indistin-
guishable between mutant (nine mice,
nine slices) and wild-type mice (nine
mice, nine slices) (Fig. 2D). This result also
suggests that the aCaMKIIT286A-129B6F2 1y
tation did not affect synaptic connectivity
in the CA1 region. Synaptic responses col-
lected during the 10-Hz tetanus were simi-
lar in mutant and wild-type mice (18), in-
dicating that the LTP deficit of the mu-
tants was not due to decreased synaptic
transmission during tetanic stimulation.
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Fig. 1. Generation of the «CaMKI|T286A-12986F2 mytants with the Pointlox procedure. (A) The targeting
construct (a), a partial map of the aCaMKII gene (b), the resulting targeted allele (c), and the targeted
allele after Cre recombination (d) are illustrated (77). B, Bam HI; G, Bgl II; H, Hind IIl; V, Pvu II; X, Xba I.
(B) Afirst PCR detected the loxP site (72) determining the genotype. A second PCR was used to identify
the point mutations (72). The gel shows the Hinc ll-digested PCR products from homozygotes (—/—)
and wild-type (+/+) mice. M1 and M2 refer to molecular weight marker lanes. (C) Immunoblot analysis
(73) indicated normal expression of aCaMKIl () and synaptophysin (S) in the mutants. Lane 1, 2.5 ng
of protein; lane 2, 5 ng of protein; and lane 3, 10 g of protein. (D and E) Immunocytochemistry of adult
coronal hippocampal sections (73) showed expression of «aCaMKII in the somata and dendrites of
mutants (E) and wild-type mice (D). Calibration bar, 0.5 mm.
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This approach allows us to classify hypotheses

as incorrect, trivial, or interesting.
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Computers help neuroscientists to analyze experimental results by automating the
application of statistics; however, computer-aided experiment planning is far less
common, due to a lack of similar quantitative formalisms for systematically assessing
evidence and uncertainty. While ontologies and other Semantic Web resources help
neuroscientists to assimilate required domain knowledge, experiment planning requires
not only ontological but also epistemological (e.g., methodological) information regarding
how knowledge was obtained. Here, we outline how epistemological principles and
graphical representations of causality can be used to formalize experiment planning
toward causal discovery. We outline two complementary approaches to experiment
planning: one that quantifies evidence per the principles of convergence and consistency,
and another that quantifies uncertainty using logical representations of constraints on
causal structure. These approaches operationalize experiment planning as the search
for an experiment that either maximizes evidence or minimizes uncertainty. Despite work
in laboratory automation, humans must still plan experiments and will likely continue to
do so for some time. There is thus a great need for experiment-planning frameworks
that are not only amenable to machine computation but also useful as aids in human
reasoning.

Keywords: epistemology, experiment planning, research map, causal graph, uncertainty quantification,
information gain

1. INTRODUCTION

Much of the work in neuroscience involves planning experiments to identify causal mechanisms;
however, neuroscientists do not use computers to plan future experiments as effectively as they
use them to analyze past experiments. When neuroscientists perform experiments, analyze data,
and report findings, they do much to ensure that their work is objective: they follow precise lab
protocols so that their experiments are reproducible; they employ rigorous statistical methods
to show that their findings are significant; and they submit their manuscripts for peer review
to build consensus in their fields. In contrast, experiment planning is usually less formal. To
plan experiments, neuroscientists find and read relevant literature, synthesize available evidence,
and design experiments that would be most instructive, given what is known. Unfortunately,
neuroscientists lack tools for systematically navigating and integrating a set of findings, and for
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Abstract—Biologists synthesize research articles into coherent
models—ideally, causal models, which predict how systems will
respond to interventions. But it is challenging to derive causal
models from articles alone, without primary data. To enable
causal discovery using only literature, we built software for anno-
tating empirical results in free text and computing valid explana-
tions, expressed as causal graphs. This paper presents our meta-
analytic pipeline: with the “research map” schema, we annotate
results in literature, which we convert into logical constraints
on causal structure; with these constraints, we find consistent
causal graphs using a state-of-the-art, causal discovery algorithm
based on answer set programming. Because these causal graphs
show which relations are underdetermined, biologists can use
this pipeline to select their next experiment. To demonstrate
this approach, we annotated neuroscience articles and applied a
‘““degrees-of-freedom” analysis for concisely visualizing features
of the causal graphs that remain consistent with the evidence—a
model space that is often too large for a machine to compute
quickly, or for a researcher to examine exhaustively.

I. INTRODUCTION

In biology, selecting the next experiment often requires
causal reasoning: Biologists must examine the evidence and
find logically consistent explanations. These consistent expla-
nations may agree in some respects but disagree in others,
depending on the amount of evidence available. It is on this
basis that biologists hypothesize a causal mechanism and
select an experiment to test it.

With primary data, biologists can identify causal mecha-
nisms using causal discovery algorithms [1]. These methods
have even motivated formal approaches to experiment selec-
tion [2]-[8]. But biologists often lack access to primary data;
instead, they rely on literature, rendering many of these causal
discovery methods unusable.

Here, we demonstrate a meta-analytic causal discovery
method that can integrate multiple forms of causal information,
including statistical findings from literature. We present a
software pipeline for annotating empirical results in research
articles and automatically deriving every consistent causal ex-
planation, expressed as a set of causal graphs [9], [10]. This set
of graphs is known as an equivalence class (see Figure 2 for an
example). An equivalence class synthesizes the causal impli-
cations of results and provides a formal, hypothesis-generating
device for selecting experiments: it encodes precisely which
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relations are determined, and which remain underdetermined.
In principle, a researcher could derive an equivalence class
by hand, but this manual computation is infeasible for all
but the simplest of cases. To facilitate this sort of reasoning,
we demonstrate a “degrees-of-freedom” analysis that concisely
visualizes features of this model space.

Causal graphs are similar to biological pathway diagrams,
but their mathematical properties make them more suitable
for synthesizing literature. If pathway diagrams from differ-
ent articles are simply “stitched” together—by overlapping
common nodes and pooling all the diagrams’ edges—the
hybrid diagram may bias researchers, inviting them to reify
specific pathways that the evidence does not support, or that
the evidence even contradicts. Figures la and 1b are typical
of biological pathway diagrams; they are not formal causal
graphs but rather illustrations in which X — Y implies that a
change in X preceded a change in Y, ostensibly implying a
causal interaction. Note the consequence of stitching these two
diagrams (Figure 1c): due to the X — Z edge, it appears that
X can affect Z independently of Y. But that is not necessarily
true. It’s possible that in the experiment that led to Figure 1la,
Y was unmeasured; in this case, Y still could have mediated
X’s effect on Z, but this mediation may have been unknown
to the researchers, who instead focused on X and Z. This sort
of bookkeeping can become very complicated, even for small
systems. And pathway diagrams’ imprecise semantics impede
the development of an algorithmic solution to this problem.

(a) Result of experiment 1 m

:\/ :: :\/ (c) Stiched results of (a) and (b)

(b) Result of experiment 2

Fig. 1. Pathway diagrams from the literature cannot simply be “stitched” to
derive causal inferences of empirical results. When the nodes and edges from
(a) and (b) are simply pooled to produce (c), this new diagram’s X — Z
edge suggests that X can effect Z independently of Y—an interpretation that
does not necessarily follow from the evidence that led to (a) and (b).

In contrast, causal graphs can be stitched with a principled
procedure [8] based on the graphical concept d-separation
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Experiment-selection algorithm: DOF only

Calculate DOFs for equivalence class
Find pair with maximum number of DOFs

Select experiment based on DOF pattern
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Experiment-selection algorithm: DOF & expectation metric

For each DOF, d, in equivalence class:

Calculate p, empirical probability of d

Calculate r, number of graphs removed if d Is correct

Calculate expectation for d: e = p*r

Select experiment based on d with largest expectation
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NUMBER OF STUDIES NEEDED TO REACH:

POLICY <50 GRAPHS <10 GRAPHS MINIMUM
DOF & expectation 5 9 15
DOF only 6 14 23

Random selection / 19 47



POLICY

DOF & expectation

DOF only

Random selection

NUMBER OF SAT-SOLVER QUERIES NEEDED FOR:
4 VARIABLES 8 VARIABLES 14 VARIABLES

543 ~10" ~10%°

18 34 2173
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Meta-analytic causal discovery & experiment selection

literature research maps (in)dependencies causal graphs degrees of freedom
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Future work

« Automate the annotation of literature

e Extend the research map schema

e (eneralize the cumulative evidence index fo enfire maps

« Improve the scalability of SAT-based causal discovery methods

e Improve experiment-selection heuristics
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